【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,0),B兩點(diǎn),與y軸交于C(0,3),對稱軸為直線x=2.
(1)請直接寫出該拋物線的解析式;
(2)設(shè)直線l與拋物線的對稱軸的交點(diǎn)為F,在對稱軸右側(cè)的拋物線上有一點(diǎn)G,若,且S△BAG=6,求點(diǎn)G的坐標(biāo);
(3)若在直線上有且只有一點(diǎn)P,使∠APB=90°,求k的值.
【答案】(1)y=x2﹣4x+3;(2)G(5,8);(3)k=
【解析】
(1)拋物線與x軸另外一個交點(diǎn)坐標(biāo)為(3,0),則函數(shù)的表達(dá)式為:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,即可求解;
(2)分點(diǎn)G在點(diǎn)B下方、點(diǎn)G在點(diǎn)B上方兩種情況,分別求解即可;
(3)由△PAS∽△BPT,則,即可求解.
解:(1),兩點(diǎn),對稱軸為直線,則拋物線與軸另外一個交點(diǎn)坐標(biāo)為,
則函數(shù)的表達(dá)式為:,
即:,解得:,
故拋物線的表達(dá)式為:①;
(2)過點(diǎn)作軸交對稱軸于點(diǎn),設(shè)對稱軸與軸交于點(diǎn).
,
又,則,點(diǎn)的坐標(biāo)為,
設(shè)直線的解析式為,
則,則,則,
①若點(diǎn)在點(diǎn)下方,則過點(diǎn)作軸交于,則設(shè)點(diǎn),,
,
即:,△,無解;
②若點(diǎn)在點(diǎn)上方,則過點(diǎn)作交軸于,則,
即:,則,則,
則可設(shè)直線的解析式為:,將代入得,.
直線的解析式為②,
聯(lián)立①②并解得:或5(舍去,
;
(3)分別過點(diǎn),作直線的垂線,垂足分別為,,
則,則,
直線的解析式為③,
聯(lián)立①③并解得:或,
則點(diǎn),
設(shè):,則有兩個相等實數(shù)根,
△,
解得:(舍去負(fù)值),
故:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,BE平分交AD于點(diǎn)E.
(1)如圖1,若,,求的面積;
(2)如圖2,過點(diǎn)A作,交DC的延長線于點(diǎn)F,分別交BE,BC于點(diǎn)G,H,且.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織學(xué)生春游,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座客車,則多出一輛車,且其余客車恰好坐滿,已知45座客車每日每輛租金為220元,60座客車每日每輛租金為300元.試問:
(1)春游學(xué)生共多少人,原計劃租45座客車多少輛?
(2)若租用同一種車,要使每位同學(xué)都有座位,怎樣租車更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時,為“不稱職”,當(dāng) 時為“基本稱職”,當(dāng) 時為“稱職”,當(dāng) 時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全折線統(tǒng)計圖和扇形統(tǒng)計圖;
(2)求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);
(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個標(biāo)準(zhǔn)的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“長跑”是中考體育考試項目之一.某中學(xué)為了解九年級學(xué)生“長跑”的情況,隨機(jī)抽取部分九年級學(xué)生,測試其長跑成績(男子1000米,女子800米),按長跑的時間的長短依次分為A,B,C,D四個等級進(jìn)行統(tǒng)計,并繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)在這次調(diào)查中共抽取了 名學(xué)生,扇形統(tǒng)計圖中,D類所對應(yīng)的扇形圓心角大小為 ;
(2)所抽取學(xué)生“長跑”測試成績的中位數(shù)會落在 等級;
(3)若該校九年級共有900名學(xué)生,請你估計該校C等級的學(xué)生約在多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中雅培粹學(xué)校舉辦運(yùn)動會,全校有3000名同學(xué)報名參加校運(yùn)會,為了解各類運(yùn)動賽事的分布情況,從中抽取了部分同學(xué)進(jìn)行統(tǒng)計:A.田徑類,B.球類,C.團(tuán)體類,D.其他,并將統(tǒng)計結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
(1)這次統(tǒng)計共抽取了 位同學(xué),扇形統(tǒng)計圖中的 ,的度數(shù)是 ;
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)估計全校共多少學(xué)生參加了球類運(yùn)動.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下的定義:若⊙C上存在兩個點(diǎn)A、B,使得∠APB=60°,則稱P為⊙C的可視點(diǎn).
(1)當(dāng)⊙O的半徑為1時,
①在點(diǎn)、E(1,1)、F(3,0)中,⊙O的可視點(diǎn)是______.
②過點(diǎn)M(4,0)作直線l:y=kx+b,若直線l上存在⊙O的可視點(diǎn),求b的取值范圍;
(2)若T(t,0),⊙T的半徑為1,直線y=上存在⊙T的可視點(diǎn),且所有可視點(diǎn)構(gòu)成的線段長度為n,若,直接寫出t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
小明同學(xué)遇到這樣一個問題,如圖1,AB=AE,∠ABC=∠EAD,AD=mAC,點(diǎn)P在線段BC上,∠ADE=∠ADP+∠ACB,求的值.
小明研究發(fā)現(xiàn),作∠BAM=∠AED,交BC于點(diǎn)M,通過構(gòu)造全等三角形,將線段BC轉(zhuǎn)化為用含AD的式子表示出來,從而求得的值(如圖2).
(1)小明構(gòu)造的全等三角形是:_________≌________;
(2)請你將小明的研究過程補(bǔ)充完整,并求出的值.
(3)參考小明思考問題的方法,解決問題:
如圖3,若將原題中“AB=AE”改為“AB=kAE”,“點(diǎn)P在線段BC上”改為“點(diǎn)P在線段BC的延長線上”,其它條件不變,若∠ACB=2α,求:的值(結(jié)果請用含α,k,m的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com