【題目】如圖,將面積為的矩形ABCD的四邊BACBDCAD分別延長至E、FG、H,使得AE=CG,BF=BC, DH=AD,連接EF, FGGH,HE,AF,CH.若四邊形EFGH為菱形,,則菱形EFGH的面積是( )

A. B.

C. D.

【答案】B

【解析】

FB=2a,AB=3a,由RtEBFRtGDHHL),推出FB=DH,即得到BF=DH=AD=BC=2a,設AE=CG=x,由FG=GH,可得16a2+x2=x+3a2+4a2,解得x=,用a表示菱形的面積即可解決問題.

解:∵FBAB=23

∴可以假設FB=2a,AB=3a,

∵四邊形ABCD是矩形,

AD=BCAB=CD,

AE=CG,

BE=GD,

∵∠EBF=GDH=90°,EF=GH,EB=GD

RtEBFRtGDHHL),

FB=DH

AD=DH,

BF=DH=AD=BC=2a,設AE=CG=x,

FG=GH,

16a2+x2=x+3a2+4a2

解得x=

∴S菱形EFGH=2××2a×3a++6a2+2××4a×=15a2

S=6a2,

a2=

∴菱形EFGH的面積=S

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF.給出下列結論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式,后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的長方形由兩個這樣的圖形拼成,若,,則該長方形的面積為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,PN分別為DE,DCBC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內(nèi)自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應用題:

某校初二年級的同學乘坐大巴車去北京展覽館參觀“砥礪奮進的五年”大型成就展,北京展覽館距離該校12千米,1號車出發(fā)3分鐘后,2號車才出發(fā),結果兩車同時到達,已知2號車的平均速度是1號車的平均速度的1.2倍,求2號車的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校的一個社會實踐小組對本校學生中開展主題為“垃圾分類知多少”的專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,劃分等級后的數(shù)據(jù)整理如下表:

等級

非常了解

比較了解

基本了解

不太了解

頻數(shù)

20

35

41

4

1)請根據(jù)調(diào)查結果,若該校有學生人,請估計這些學生中“比較了解”垃圾分類知識的人數(shù).

2)在“比較了解”的調(diào)查結果里,其中九(1)班學生共有人,其中名男生和名女生,在這人中,打算隨機選出位進行采訪,求出所選兩位同學恰好是1名男生和1名女生的概率.(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)至少為( )

A. 5 B. 6

C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在信息快速發(fā)展的社會,“信息消費”已成為人們生活的重要組成部分.某高校組織課外小組在鄭州市的一個社區(qū)隨機抽取部分家庭,調(diào)查每月用于信息消費的金額,根據(jù)數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計表和統(tǒng)計圖.已知A,B兩組戶數(shù)頻數(shù)直方圖的高度比為1:5.

月信息消費額分組統(tǒng)計表

組別

消費額(元)

A

10x100

B

100x200

C

20x300

D

300x400

E

x400

請結合圖表中相關數(shù)據(jù)解答下列問題:

(1)這次接受調(diào)查的有 戶;

(2)在扇形統(tǒng)計圖中,“E”所對應的圓心角的度數(shù)是 ;

(3)請你補全頻數(shù)直方圖;

(4)若該社區(qū)有2000戶住戶,請估計月信息消費額不少于200元的戶數(shù)是多少?

查看答案和解析>>

同步練習冊答案