如圖,點(diǎn)E、F分別是?ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)試判斷四邊形AECF的形狀;
(2)若AE=BE,∠BAC=90°,求證:四邊形AECF是菱形.
(1)四邊形AECF為平行四邊形.
∵四邊形ABCD是平行四邊形,
∴AD=BC,ADBC,
又∵BE=DF,∴AF=CE,
∴四邊形AECF為平行四邊形;

(2)證明:∵AE=BE,∴∠B=∠BAE,
又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,
∴∠BCA=∠CAE,
∴AE=CE,
又∵四邊形AECF為平行四邊形,
∴四邊形AECF是菱形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,把兩個(gè)等寬的紙條按圖示放置,如果重疊部分的四邊形的兩條對(duì)角線的長分別是
5
+1
,
5
-1
,則重疊的部分的四邊形面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,菱形ABCD中,AB=15,∠ADC=120°,則B、D兩點(diǎn)之間的距離為( 。
A.15B.
15
2
3
C.7.5D.15
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知:矩形ABCD中,O是AC與BD的交點(diǎn),過點(diǎn)O的直線EF與AB、CD的延長線分別交于點(diǎn)E、F.
(1)求證:△BOE≌△DOF;
(2)當(dāng)EF與AC滿足什么條件時(shí),四邊形AECF是菱形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連接四邊形ABCD各邊中點(diǎn),得到四邊形EFGH,要使四邊形EFGH是菱形,應(yīng)添加的條件是( 。
A.ADBCB.AC=BDC.AC⊥BDD.AD=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E、F是對(duì)角線AC上的兩點(diǎn),AE=CF.
求證:四邊形BEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

菱形ABCD的對(duì)角線AC=10cm,BD=6cm,那么tan
A
2
為( 。
A.
3
5
B.
4
5
C.
5
34
D.
3
34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以菱形ABCD兩條對(duì)角線所在直線建立直角坐標(biāo)系,對(duì)角線交點(diǎn)O為原點(diǎn),菱形的邊長為5,A(-3,0),則B的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形的兩條對(duì)角線長分別為6cm和10cm,則該菱形的面積為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案