【題目】如圖,拋物線y=-x2+5x+n與x軸交于點(diǎn)A(1,0)和點(diǎn)C,與y軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)P是y軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求點(diǎn)P的坐標(biāo).
【答案】(1) y=-x2+5x-4 ;(2)6;(3) P的坐標(biāo)為(0,-4)或(0,--4)或(0,4).
【解析】
(1)將點(diǎn)A的坐標(biāo)代入拋物線中,即可得出二次函數(shù)的解析式;(2)求得點(diǎn)B、C的坐標(biāo),根據(jù)三角形的面積公式求解即可;(3)分PB=AB和PA=AB兩種情況求點(diǎn)P的坐標(biāo)即可.
解:(1)根據(jù)題意,得0=-1+5+n,解得n=-4,
∴拋物線的解析式為y=-x2+5x-4.
(2)令y=0,即-x2+5x-4=0,解得x1=1,x2=4,
∴點(diǎn)C坐標(biāo)為(4,0).
令x=0,解得y=-4,∴點(diǎn)B的坐標(biāo)為(0,-4).
∴由圖象可得S△ABC=×OB×AC=×4×3=6.
(3)①當(dāng)PA=AB時(shí),則點(diǎn)O為PB的中點(diǎn),
∴OP=OB=4,
∴點(diǎn)P的坐標(biāo)為(0,4);
②當(dāng)AB=BP時(shí),AB=,
∴OP=±4,∴點(diǎn)P的坐標(biāo)為(0,-4)或(0,--4).
綜上,點(diǎn)P的坐標(biāo)為(0,-4)或(0,--4)或(0,4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,花叢中有一路燈桿AB,在燈光下,大華在D點(diǎn)處的影長DE=3 m,沿BD方向行走到達(dá)G點(diǎn),DG=5 m,這時(shí)大華的影長GH=4 m如果大華的身高為2 m,求路燈桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥CD,直線L和直線AB,CD分別交于點(diǎn)E,F,直線L上有一動點(diǎn)P.
(1)如圖1,點(diǎn)P在E,F之間運(yùn)動時(shí),∠PMB,∠MPN,∠PND之間有什么關(guān)系,并說明理由;
(2)若點(diǎn)P在E,F兩點(diǎn)外側(cè)運(yùn)動時(shí),如圖2和圖3(P點(diǎn)與E,F不重合),試直接寫出∠PMB,∠MPN,∠PND之間有什么關(guān)系,不必寫理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx的圖象經(jīng)過點(diǎn)A(2,4)與B(6,0).
(1)求a,b的值;
(2)點(diǎn)C是該二次函數(shù)圖象上A,B兩點(diǎn)之間的一動點(diǎn),橫坐標(biāo)為x(2<x<6),寫出四邊形OACB的面積S關(guān)于點(diǎn)C的橫坐標(biāo)x的函數(shù)表達(dá)式,并求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式,........請按照上述三個等式及其變化過程,回答下列問題。
(1)猜想________________.
(2)猜想_____________________=.
(3)試猜想第N個等式為_____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別是R、S,若AQ=PQ,PR=PS,下面四個結(jié)論:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正確結(jié)論的序號是( ).
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在探索三角形全等的條件時(shí),老師給出了定長線段,且長度為的邊所對的角為 小明和小亮按照所給條件分別畫出了圖1中的三角形,他們把兩個三角形重合在一起(如圖2),其中發(fā)現(xiàn)它們不全等,但他們對該圖形產(chǎn)生了濃厚興趣,并進(jìn)行了進(jìn)一步的探究:
(1)當(dāng)時(shí)(如圖2),小明測得,請根據(jù)小明的測量結(jié)果,求的大;
(2)當(dāng)時(shí),將沿翻折,得到(如圖3),小明和小亮發(fā)現(xiàn)的大小與角度有關(guān),請找出它們的關(guān)系,并說明理由;
(3)如圖4,在(2)問的基礎(chǔ)上,過點(diǎn)作的垂線,垂足為點(diǎn),延長到點(diǎn),使得,連接,請判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,∠ABG為銳角,AH∥BG,點(diǎn)C從點(diǎn)B(C不與B重合)出發(fā),沿射線BG的方向移動,CD∥AB交直線AH于點(diǎn)D,CE⊥CD交AB于點(diǎn)E,CF⊥AD,垂足為F(F不與A重合),若∠ECF=n°,則∠BAF的度數(shù)為_____度.(用n來表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com