【題目】在平面直角坐標(biāo)系中,如圖所示A(﹣2,1),B(﹣4,1),C(﹣1,4).
(1)△ABC向上平移一個單位,再向左平移一個單位得到△A1B1C1,那么C的對應(yīng)點C1的坐標(biāo)為_____;P點到△ABC三個頂點的距離相等,點P的坐標(biāo)為______;
(2)△ABC關(guān)于第一象限角平分線所在的直線作軸對稱變換得到△A2B2C2,那么點B的對應(yīng)點B2的坐標(biāo)為______;
(3)△A3B3C3是△ABC繞坐標(biāo)平面內(nèi)的Q點順時針旋轉(zhuǎn)得到的,且A3(1,0),B3(1,2),C3(4,﹣1),點Q的坐標(biāo)為_____.
【答案】(1)(﹣2,5),(﹣3,3);(2)(1,﹣4);(3)(﹣1,1).
【解析】
(1)分別作出A,B,C向上平移一個單位,再向左平移一個單位的對應(yīng)點A1,B1,C1,再順次連接可得△A1B1C1,分別作AB,BC的垂直平分線,交點即為點P;
(2)分別作出A,B,C關(guān)于第一象限角平分線所在的直線作軸對稱變換的對應(yīng)點A2,B2,C2再順次連接可得△A2B2C2,再寫出B2坐標(biāo)即可;
(3)分別作出A,B,C對應(yīng)點A3,B3,C3,再作出對應(yīng)點連線段的垂直平分線的交點Q即可解決問題.
解:(1)如圖,△A1B1C1即為所求,那么C的對應(yīng)點C1的坐標(biāo)為(﹣2,5),分別作AB,BC的垂直平分線交于點P,點P的坐標(biāo)為(﹣3,3).
故答案為:(﹣2,5),(﹣3,3);
(2)△A2B2C2如圖所示,那么點B的對應(yīng)點B2的坐標(biāo)為(1,﹣4).
故答案為(1,﹣4).
(3)△A3B3C3即為所求,Q(﹣1,1),
故答案為(﹣1,1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當(dāng)EF∥PQ時,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示:
(1)寫出點A,B,C三點的坐標(biāo);
(2)若△ABC各頂點的橫坐標(biāo)不變,縱坐標(biāo)都乘以﹣1,請你在同一坐標(biāo)系中描出對應(yīng)的點A',B',C',并依次連接這三點,所得的△A'B'C'與原△ABC的位置關(guān)系是什么?
(3)在x軸上作出一點P,使得AP平分∠BAC.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣2anx+an2+n+3的頂點P在一條定直線l上.
(1)直接寫出直線l的解析式;
(2)對于任意非零實數(shù)a,存在確定的n的值,使拋物線與x軸有唯一的公共點,求此時n的值;
(3)當(dāng)點P在x軸上時,拋物線與直線l的另一個交點Q,過點Q作x軸的平行線,交拋物線于點A,過點Q作y軸的平行線,交x軸于點B,求的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC,AB=AC,點D在△ABC的外部,且∠DAC<90°,
(1)如圖1,若AD=AC,求∠BDC;
(2)如圖2,點E在線段AC上,線段DE的垂直平分線交BC的延長線于點P.當(dāng)點D正好和點B關(guān)于線段AC的中點對稱時,
①證明:△PDE為直角三角形;
②連接BE、AD,若,直接寫出=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標(biāo)為(2,3)。雙曲線的圖像經(jīng)過BC的中點D,且與AB交于點E,連接DE。
(1)求k的值及點E的坐標(biāo);
(2)若點F是邊上一點,且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市進貨員預(yù)測一種應(yīng)季水果能暢銷市場,用3000元購進第一批這種水果,面市后果然供不應(yīng)求,全部賣完,超市進貨員又用1500元購進了第二批這種水果,但進價比第一批上漲了50%,若兩批水果的平均價格為9元/kg
(1)求購進第一批該種水果的單價;
(2)第一批水果的銷售單價為10元/kg,第二批水果的銷售單價為15元/kg,但在第二批水果的銷售過程中發(fā)現(xiàn)銷量不好,超市決定第二批水果銷售一定數(shù)量后將剩余水果按原售價的7折銷售.要使兩批水果全部銷售后共獲利不少于900元,問第二批水果按原銷售單價至少銷售多少千克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com