【題目】如圖,已知直線y=﹣2x+6與拋物線yax2+bx+c相交于AB兩點,且點A14)為拋物線的頂點,點Bx軸上

1)求拋物線的解析式;

2)在(1)中拋物線的第三象限圖象上是否存在一點P,使△POB≌△POC?若存在,求出點P的坐標(biāo):若不存在,請說明理由.

【答案】(1)y=﹣x2+2x+3;(2)存在. P).

【解析】

1)根據(jù)待定系數(shù)法求解析式即可

2)先確定出點C坐標(biāo),然后根據(jù)POB≌△POC建立方程,求解即可

解:(1)由y=﹣2x+60,得x3

B3,0).

A1,4)為頂點,

∴設(shè)拋物線的解析為yax12+4,解得a=﹣1

y=﹣(x12+4=﹣x2+2x+3;

2)存在.

當(dāng)x0時,y=﹣x2+2x+33,

C0,3).

OBOC3,OPOP,

∴當(dāng)∠POB=∠POC時,△POB≌△POC

PMx軸于M,作PNy軸于N,則∠POM=∠PON45°.

PMPN

設(shè)Pm,m),則m=﹣m2+2m+3,解得m

∵點P在第三象限,

P,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將進貨單價為40元的商品按50元售出,能售出500件,如果該商品漲價1元,其銷售量就要減少10件,為了賺取8000元的利潤,售價應(yīng)定為多少元?這時應(yīng)進貨多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠BAC>90°,點DBC的中點,點EAC上,將CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結(jié)AD,則下列結(jié)論不一定正確的是(  )

A. AE=EF B. AB=2DE

C. ADFADE的面積相等 D. ADEFDE的面積相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下說法合理的是( 。

A. 小明做了3次擲圖釘?shù)膶嶒灒l(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是

B. 某彩票的中獎概率是5%,那么買100張彩票一定有5張中獎

C. 某射擊運動員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是

D. 小明做了3次擲均勻硬幣的實驗,其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.

(1)求此反比例函數(shù)的表達式;

(2)若點P在x軸上,且SACP=SBOC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,BC4tanB2,以AB的中點D為圓心,r為半徑作⊙D,如果點B在⊙D內(nèi),點C在⊙D外,那么r可以。ā 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩位運動員中選出一名參加在規(guī)定時間內(nèi)的投籃比賽.預(yù)先對這兩名運動員進行了6次測試,成績?nèi)缦拢▎挝唬簜):

甲:6,12,8,12,1012

乙:9,10,11,10,12,8

1)填表:

平均數(shù)

眾數(shù)

方差

10

   

   

   

10

2)根據(jù)測試成績,請你運用所學(xué)的統(tǒng)計知識作出分析,派哪一位運動員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,BC兩點的坐標(biāo)分別為B0,3)和C0,﹣),點Ax軸正半軸上,且滿足∠BAO30°

1)過點CCEAB于點E,交AO于點F,點G為線段OC上一動點,連接GF,將OFG沿FG翻折使點O落在平面內(nèi)的點O處,連接OC,求線段OF的長以及線段OC的最小值;

2)如圖2,點D的坐標(biāo)為D(﹣10),將BDC繞點B順時針旋轉(zhuǎn),使得BCAB于點B,將旋轉(zhuǎn)后的BDC沿直線AB平移,平移中的BDC記為BDC,設(shè)直線BCx軸交于點MN為平面內(nèi)任意一點,當(dāng)以B、D、MN為頂點的四邊形是菱形時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的切線,切點為,的直徑,連接.過點作于點,交,連接

(1)求證:的切線;

(2)求證:的內(nèi)心;

(3),求的長.

查看答案和解析>>

同步練習(xí)冊答案