【題目】如圖,已知直線y=﹣2x+6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,4)為拋物線的頂點,點B在x軸上
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點P,使△POB≌△POC?若存在,求出點P的坐標(biāo):若不存在,請說明理由.
【答案】(1)y=﹣x2+2x+3;(2)存在. P().
【解析】
(1)根據(jù)待定系數(shù)法求解析式即可
(2)先確定出點C坐標(biāo),然后根據(jù)△POB≌△POC建立方程,求解即可
解:(1)由y=﹣2x+6=0,得x=3
∴B(3,0).
∵A(1,4)為頂點,
∴設(shè)拋物線的解析為y=a(x﹣1)2+4,解得a=﹣1.
∴y=﹣(x﹣1)2+4=﹣x2+2x+3;
(2)存在.
當(dāng)x=0時,y=﹣x2+2x+3=3,
∴C(0,3).
∵OB=OC=3,OP=OP,
∴當(dāng)∠POB=∠POC時,△POB≌△POC.
作PM⊥x軸于M,作PN⊥y軸于N,則∠POM=∠PON=45°.
∴PM=PN.
設(shè)P(m,m),則m=﹣m2+2m+3,解得m=.
∵點P在第三象限,
∴P(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將進貨單價為40元的商品按50元售出,能售出500件,如果該商品漲價1元,其銷售量就要減少10件,為了賺取8000元的利潤,售價應(yīng)定為多少元?這時應(yīng)進貨多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點D為BC的中點,點E在AC上,將△CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結(jié)AD,則下列結(jié)論不一定正確的是( )
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法合理的是( 。
A. 小明做了3次擲圖釘?shù)膶嶒灒l(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是
B. 某彩票的中獎概率是5%,那么買100張彩票一定有5張中獎
C. 某射擊運動員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是
D. 小明做了3次擲均勻硬幣的實驗,其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中點D為圓心,r為半徑作⊙D,如果點B在⊙D內(nèi),點C在⊙D外,那么r可以。ā 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩位運動員中選出一名參加在規(guī)定時間內(nèi)的投籃比賽.預(yù)先對這兩名運動員進行了6次測試,成績?nèi)缦拢▎挝唬簜):
甲:6,12,8,12,10,12;
乙:9,10,11,10,12,8;
(1)填表:
平均數(shù) | 眾數(shù) | 方差 | |
甲 | 10 |
|
|
乙 |
| 10 |
|
(2)根據(jù)測試成績,請你運用所學(xué)的統(tǒng)計知識作出分析,派哪一位運動員參賽更好?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點的坐標(biāo)分別為B(0,3)和C(0,﹣),點A在x軸正半軸上,且滿足∠BAO=30°.
(1)過點C作CE⊥AB于點E,交AO于點F,點G為線段OC上一動點,連接GF,將△OFG沿FG翻折使點O落在平面內(nèi)的點O′處,連接O′C,求線段OF的長以及線段O′C的最小值;
(2)如圖2,點D的坐標(biāo)為D(﹣1,0),將△BDC繞點B順時針旋轉(zhuǎn),使得BC⊥AB于點B,將旋轉(zhuǎn)后的△BDC沿直線AB平移,平移中的△BDC記為△B′D′C′,設(shè)直線B′C′與x軸交于點M,N為平面內(nèi)任意一點,當(dāng)以B′、D′、M、N為頂點的四邊形是菱形時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的切線,切點為,是的直徑,連接交于.過點作于點,交于,連接,.
(1)求證:是的切線;
(2)求證:為的內(nèi)心;
(3)若,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com