如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF.
求證:(1)CF=EB;
  。2)∠CBA+∠AFD=180°.
分析:(1)根據(jù)角平分線的性質(zhì)可以得出DC=DE,在證明△DCF≌△DEB就可以得出CF=EB;
(2)由△DCF≌△DEB可以得出∠DFC=∠B,再根據(jù)平角的性質(zhì)就可以得出結(jié)論.
解答:解:(1)∵∠C=90°,
∴DC⊥AC.
∵AD是∠BAC的平分線,DE⊥AB,
∴DC=DE.
在At△DCF和Rt△DEB中
BD=DF
DC=DE
,
∴At△DCF≌Rt△DEB(HL),
∴CF=EB.

(2)∵At△DCF≌Rt△DEB,
∴∠DFC=∠B.
∵∠DFC+∠AFD=180°,
∴∠CAB+∠AFD=180°.
點評:本題考查了角平分線的性質(zhì)的運用,全等三角形的判定與性質(zhì)的運用,平角的性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案