【題目】“互聯(lián)網(wǎng)+”時(shí)代,網(wǎng)上購物備受消費(fèi)者青睞.某網(wǎng)店專售一款休閑褲,其成本為每條40元,當(dāng)售價(jià)為每條80元時(shí),每月可銷售100條.為了吸引更多顧客,該網(wǎng)店采取降價(jià)措施.據(jù)市場調(diào)查反映:銷售單價(jià)每降1元,則每月可多銷售5條.設(shè)每條褲子的售價(jià)為元(為正整數(shù)),每月的銷售量為條.
(1)直接寫出與的函數(shù)關(guān)系式;
(2)設(shè)該網(wǎng)店每月獲得的利潤為元,當(dāng)銷售單價(jià)降低多少元時(shí),每月獲得的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出200元資助貧困學(xué)生.為了保證捐款后每月利潤不低于4220元,且讓消費(fèi)者得到最大的實(shí)惠,該如何確定休閑褲的銷售單價(jià)?
【答案】(1);(2)當(dāng)降價(jià)10元時(shí),每月獲得最大利潤為4500元;(3)當(dāng)銷售單價(jià)定為66元時(shí),即符合網(wǎng)店要求,又能讓顧客得到最大實(shí)惠.
【解析】
(1)直接利用銷售單價(jià)每降1元,則每月可多銷售5條得出與的函數(shù)關(guān)系式;
(2)利用銷量×每件利潤=總利潤進(jìn)而得出函數(shù)關(guān)系式求出最值;
(3)利用總利潤,求出的值,進(jìn)而得出答案.
解:(1)由題意可得:整理得;
(2)由題意,得:
∵,
∴有最大值,
即當(dāng)時(shí),,
∴應(yīng)降價(jià)(元)
答:當(dāng)降價(jià)10元時(shí),每月獲得最大利潤為4500元;
(3)由題意,得:
解之,得:,,
∵拋物線開口向下,對(duì)稱軸為直線,
∴當(dāng)時(shí),符合該網(wǎng)店要求
而為了讓顧客得到最大實(shí)惠,故,
∴當(dāng)銷售單價(jià)定為66元時(shí),即符合網(wǎng)店要求,又能讓顧客得到最大實(shí)惠.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AB為⊙O的直徑,AD與⊙O相切于點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長線上一點(diǎn),且CE=CB.
(1)求證:BC為⊙O的切線;
(2)連接AE并延長與BC的延長線交于點(diǎn)G(如圖②所示).若AB=,CD=9,求線段BC和EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象如圖,下列結(jié)論:①;②;③當(dāng)時(shí),;④;⑤若,且,則.其中正確的有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)、點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,平分,交于點(diǎn),過點(diǎn)作,交的延長線于點(diǎn),交的延長線于點(diǎn).
(1)求證:;
(2)如圖2,連接、,求證:平分;
(3)如圖3,連接交于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家將于5月1日進(jìn)行自駕游,由于交通便利,準(zhǔn)備將行程分為上午和下午.上午的備選地點(diǎn)為:A—黿頭渚、B—常州淹城春秋樂園、C—蘇州樂園,下午的備選地點(diǎn)為:D—常州恐龍園、E—無錫動(dòng)物園.
(1)請(qǐng)用畫樹狀圖或列表的方法分析并寫出小明家所有可能的游玩方式(用字母表示即可);
(2)求小明家恰好在同一城市游玩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=- x2 + 4x上,且橫坐標(biāo)為1,點(diǎn)B與點(diǎn)A關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AB與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E的坐標(biāo)為(1,1).
(1)求線段AB的長.
(2)點(diǎn)P為線段AB.上方拋物線上的任意一點(diǎn),過點(diǎn)P作AB的垂線交AB于點(diǎn)H,點(diǎn)F為y軸上一點(diǎn),當(dāng)PBE的面積最大時(shí),求PH + HF + FO的最小值.
(3)在(2)中,PH+HF+方FO取得最小值時(shí),將CFH繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°后得到CF'H',過點(diǎn)F'作CF'的垂線與直線AB交于點(diǎn)Q,點(diǎn)R為拋物線對(duì)稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使以點(diǎn)D,Q,R,S為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫出點(diǎn)S的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com