【題目】梯形ABCD中,ABDC,AD=BC,以AD為直徑的⊙OABE,O的切線EFBCF,求證:

1EFBC; 2BF·BC=BE·AE.

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)已知利用切線的性質(zhì)可得到∠BEF+B=90°,即EFBC;
2)利用兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似得到△ADE∽△BEF,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例和AD=BC,即可得到BFBC=BEAE

證明:(1)連接OE

∵∠DEF+DEO=90°,∠ADE+OEA=90°,

∴∠DEF=OEA

OA=OE,AD=BC,

∴∠OEA=A=B

∴∠A=B=DEF

∵∠DEF+BEF=90°,

∴∠BEF+B=90°

EFBC;

2)∵∠A=B,∠AED=BFE=90°,

∴△ADE∽△BEF

AD=BC,

BFBC=BEAE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠C90°,點(diǎn)DAC上,∠CBD=∠A,過A、D兩點(diǎn)的圓的圓心OAB.

1)判斷BD所在直線與⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若AE4,∠A30°,求圖中由BD、BE、弧DE圍成陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC2,點(diǎn)MBC上,連接AM,作∠AMN=∠AMB,點(diǎn)N在直線AD上,MNCD于點(diǎn)E

(1)求證:△AMN是等腰三角形;

(2)求證:AM22BMAN;

(3)當(dāng)MBC中點(diǎn)時(shí),求ME的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的方格中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1△OAB是關(guān)于點(diǎn)P為位似中心的位似圖形.

(1)在圖中標(biāo)出位似中心P的位置,并寫出點(diǎn)P的坐標(biāo)及△O1A1B1△OAB的相似比;

(2)以原點(diǎn)O為位似中心,在y軸的左側(cè)畫出△OAB的一個(gè)位似△OA2B2,使它與△OAB的位似比為2:1,并寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有時(shí)我們可以看到這樣的轉(zhuǎn)盤游戲:如圖所示,你只要出1元錢就可以隨意地轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止時(shí)指針落在哪個(gè)區(qū)域,你就按照這個(gè)區(qū)域所示的數(shù)字相應(yīng)地順時(shí)針跳過幾格,然后按照下圖所示的說明確定你的資金是多少.例如,當(dāng)指針指向 “2”區(qū)域時(shí)候,你就向前跳過兩個(gè)格到“5”,按獎(jiǎng)金說明,“5”所示的資金為0.2元,你就可以得0.2.請(qǐng)問這個(gè)游戲公平嗎?能否用你所學(xué)的知識(shí)揭示其中的秘密?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(﹣1,0),(30),(1,﹣5)三點(diǎn).

1)求該二次函數(shù)的解析式;

2)求該圖象的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,在直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)Ax軸上,OA=4,AB=3.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度,沿AO向終點(diǎn)O移動(dòng);同時(shí)點(diǎn)N從點(diǎn)O出發(fā),以每秒125個(gè)單位長度的速度,沿OB向終點(diǎn)B移動(dòng).當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了x秒(0x4)時(shí),解答下列問題:

1)求點(diǎn)N的坐標(biāo)(用含x的代數(shù)式表示);

2)設(shè)△OMN的面積是S,求Sx之間的函數(shù)表達(dá)式;當(dāng)x為何值時(shí),S有最大值?最大值是多少?

3)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200/臺(tái).經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).

1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,∠BAC90°,ABAC1,點(diǎn)DBC邊上的一個(gè)動(dòng)點(diǎn)(不與B C點(diǎn)重合),∠ADE45°.

1)求證:△ABD∽△DCE;

2)設(shè)BDx,AEy,求y關(guān)于x的函數(shù)關(guān)系式;

3)當(dāng)△ADE是等腰三角形時(shí),請(qǐng)直接寫出AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案