【題目】如圖,△ABC中,AB=AC,∠BAC=56°,點DAB中點,且ODAB,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合則∠OEC_____

【答案】

【解析】

連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得OA=OB,根據(jù)等邊對等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對等角求出∠OCB=∠OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對等角求出∠COE,再利用三角形的內(nèi)角和定理計算即可解

如圖,連接OB、OC,

∵∠BAC=56°,AO為∠BAC的平分線,

∴∠BAO=

又∵AB=AC

∵DO是AB的垂直平分線

∴OA=OB

∴∠ABO=∠BAO=28°

∴∠OBC=∠ABC-∠ABO=62°-28°=34°

∵DO是AB的垂直平分線,AO為∠BAC的平分線

∴點O是△ABC的外心

∴OB=OC

∴∠OCB=∠OBC=34°

∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合

∴OE=CE

∴∠COE=∠OCE=34°

在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-34°-34°=112°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一條拋物線的對稱軸是直線x=1;它與x軸相交于A,B兩點(點A在點B的左邊),且線段AB的長是4;它還與過點C(1,﹣2)的直線有一個交點是D(2,﹣3).

(1)求這條直線的函數(shù)解析式;

(2)求這條拋物線的函數(shù)解析式;

(3)若這條直線上有P點,使SPAB=12,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,BN,DN分別平分∠ABM,∠MDC,試問∠M與∠N之間的數(shù)量關系如何?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,BC=12AD=8,ADBC邊上的高.若P,Q分別是ADAC上的動點,則PC+PQ的最小值是( )

A.6B.8C.9.6D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,DAC邊中點,過D點作DEDF,交ABE,交BCF,連接BD.

(1)求證:△CDF≌△BED

(2)AE=4FC=3,求AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB8,射線BGAB,P為射線BG上一點,連接AP,APCPAP=CP,連接AC,PD平分∠APC,C、D與點BAP兩側(cè),在線段DP取一點E,使∠EAP=∠BAP,連接CE與線段AB相交于點F(F與點A、B不重合).

(1)求證:AEP≌△CEP;

(2)判斷CFAB的位置關系,并說明理由;

(3)求△AEF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ymxn與反比例函數(shù)交于A、B兩點,點A在點B的左邊,與x軸、y軸分別交于點C、點DAEx軸于E,BFy軸于F

(1) 若mkn=0,求AB兩點的坐標(用m表示).

(2) 如圖1,若A(x1y1)、B(x2,y2),寫出y1y2n的大小關系,并證明.

(3) 如圖2,M、N分別為反比例函數(shù)圖象上的點,AMBNx軸.若,且AM,BN之間的距離為5,則kb=_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知動點P在函數(shù)x0的圖象上運動,PMx軸于點M,PNy軸于點N,線段PM、PN分別與直線ABy=x+1交于點E,F,AFBE的值為(  )

A. 4 B. 2 C. 1 D.

查看答案和解析>>

同步練習冊答案