【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連結(jié)AE、DE、DC

1)求證:DE垂直AC

2)求證:△ABE≌△CBD;

3)若∠CAE=30°,求∠BDC的度數(shù).

【答案】1)證明見解析;(2)證明見解析;(375°.

【解析】

1)延長DEAC于點H,根據(jù)等腰直角三角形的性質(zhì)可得: BAC=45°,BDE=45°,再根據(jù)三角形內(nèi)角和定理可得∠DHA=90°,即可求證;

2)由已知條件根據(jù)SAS容易證明△ABE≌△CBD;

3)由全等三角形對應(yīng)角相等得到∠AEB=CDB,利用外角的性質(zhì)求出∠AEB的度數(shù),即可確定∠BDC的度數(shù).

1)延長DEAC于一點H,

∵∠ABC=90°,DAB延長線上一點,

ABE=∠CBD=90°,

AB=BC,BE=BD,

BAC=45°,∠BDE=45°,

DAH=45°,∠ADH=45°,

DHA=90°,

DEAC.

2)證明:∵∠ABC=90°,DAB延長線上一點,∴∠ABE=∠CBD=90°.在ABECBD中.

,

ABECBDSAS);

3)解:AB=CB,ABC=90°,∴∠CAB=45°

CAE=30°,∴∠BAE=∠CABCAE=45°30°=15°

ABECBD,∴∠BCD=∠BAE=15°,∴∠BDC=90°BCD=90°15°=75°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個長為8分米寬為5分米,高為7分米的長方體上截去一個長為6分米,寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點A處沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數(shù);

3設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)DCEAOC相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將AOB繞點B逆時針旋轉(zhuǎn)90°后,得到A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請仔細觀察圖中等邊三角形圖形的變化規(guī)律,寫出你發(fā)現(xiàn)關(guān)于等邊三角形內(nèi)一點到三邊距離的數(shù)學(xué)事實:_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生的學(xué)業(yè)負擔(dān)過重會嚴重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達標(biāo)(達標(biāo)包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABAC,ADAE,BECD相交于點P

1)求證:PCPB

2)求證:∠CAP=∠BAP;

3)利用(2)的結(jié)論,用直尺和圓規(guī)作∠MON的平分線.

查看答案和解析>>

同步練習(xí)冊答案