7.某商場(chǎng)銷售一種筆記本,進(jìn)價(jià)為每本10元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)為12元時(shí),每天可賣出100本.如調(diào)整價(jià)格,每漲價(jià)1元,每天要少賣出10本.
(1)寫(xiě)出該商場(chǎng)銷售這種筆記本,每天所得的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式(x>10);
(2)若該筆記本的銷售單價(jià)高于進(jìn)價(jià)且不超過(guò)15元,求銷售單價(jià)為多少元時(shí),該筆記本每天的銷售利潤(rùn)最大?并求出最大值.

分析 (1)根據(jù)題意列方程即可得到結(jié)論;
(2)把y=-10x2+320x-2200化為y=-10(x-16)2+360,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

解答 解:(1)y=(x-10)[100-10(x-12)
=(x-10)(100-10x+120)=-10x2+320x-2200;

(2)y=-10x2+320x-2200=-10(x-16)2+360,
由題意可得:10<x≤15,
∵a=-10<0,對(duì)稱軸為直線x=16,
∴拋物線開(kāi)口向下,在對(duì)稱軸左側(cè),y隨x的增大而增大,
∴當(dāng)x=15時(shí),y取最大值為350元,
答:銷售單價(jià)為15元時(shí),該文具每天的銷售利潤(rùn)最大,最大值是350元.

點(diǎn)評(píng) 本題考查了二次函數(shù)的應(yīng)用,難度較大,最大銷售利潤(rùn)的問(wèn)題常利函數(shù)的增減性來(lái)解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,其中要注意應(yīng)該在自變量的取值范圍內(nèi)求最大值(或最小值),也就是說(shuō)二次函數(shù)的最值不一定在x=-$\frac{2a}$時(shí)取得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列說(shuō)法中正確的是( 。
A.畫(huà)一條長(zhǎng)3cm的射線B.直線、線段、射線中直線最長(zhǎng)
C.延長(zhǎng)線段BA到C,使AC=BAD.延長(zhǎng)射線OA到點(diǎn)C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,在建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-6,1),點(diǎn)B的坐標(biāo)為(-3,1),點(diǎn)C的坐標(biāo)為(-3,3).將Rt△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到Rt△A1B1C1,試在圖上畫(huà)出的圖形Rt△A1B1C1的圖形,并寫(xiě)出點(diǎn)A1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.多項(xiàng)式x2y+2x+5y-25是三次四項(xiàng)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)解下列方程:
①x2-x-2=0
②3x2-2x=1
(2)已知關(guān)于x的一元二次方程x2-3x+2k=0有一個(gè)根是1,求k的值并求出方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.觀察下列式子:
32+42=52;
82+62=102;
152+82=172
242+102=262

(1)請(qǐng)你按以上規(guī)律寫(xiě)出接下來(lái)的第五個(gè)式子;
(2)以(n2-1)、2n、(n2+1)(其中n>1)為三邊長(zhǎng)的三角形是否為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.點(diǎn)A、B、C在同一條直線上,AB=6cm,BC=2cm,點(diǎn)M是線段AC的中點(diǎn),求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如果方程3x+2=0與方程3x+4k=18的解相同,則k=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x2-x=2,則x3-3x2=-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案