如圖所示,學校里有一塊三角形形狀的花圃△ABC,現(xiàn)測得∠A=30°,AC=40m,BC=25m,請你幫助計算一下這塊花圃的面積?
作CD⊥AB于D.
∵∠A=30°,
∴CD=
1
2
AC=
1
2
×40=20(m),
AD=
AC2-CD2
=
402-202
=20
3
m,
BD=
BC2-CD2
=15(m)
∴AB=AD+BD=(20
3
+15)(m),
∴S△ABC=
1
2
AB•CD=
1
2
(20
3
+15)×20=(200
3
+150)(m2).
故這塊花圃的面積是(200
3
+150)m2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

現(xiàn)要建造一段水壩,它的橫截面是梯形ABCD,其上底CD=4米,斜坡BC的坡度i=1:2,tanA=
1
3
,壩高DE=6米.
(1)求截面梯形的面積;
(2)若該水壩的長為1000米,工程由甲、乙兩個工程隊同時合作完成,原計劃需要25天,但在開工時,甲工程隊增加了機器,工作效率提高60%,結(jié)果工程提前了5天完成,問這兩個工程隊原計劃每天各完成多少土方(壩的土方=壩的橫截面的面積×壩的長度)?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,斜坡MN坡度為i=1:2.4,在坡腳N處有一棵大樹PN,太陽光線以30°的俯角將樹頂P的影子落在斜坡MN上的點Q處.如果大樹PN在斜坡MN上的影子NQ=13米,求大樹PN的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

九(1)班的數(shù)學課外小組,對公園人工湖中的湖心亭A處到筆直的南岸的距離進行測量.他們采取了以下方案:如圖,站在湖心亭的A處測得南岸的-尊石雕C在其東南方向,再向正北方向前進10米到達B處,又測得石雕C在其南偏東30°方向.你認為此方案能夠測得該公園的湖心亭A處到南岸的距離嗎?若可以,請計算此距離是多少米?(結(jié)果保留到小數(shù)點后一位)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在數(shù)學活動課上,老師帶領學生去測河寬.如圖,某學生在點A處觀測到河對岸水邊處有一點C,并測得∠CAD=45°,在距離A點30米的B處測得∠CBD=30°,求河寬CD(結(jié)果可帶根號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在△ABC中,∠C=90°,cosB=
3
2
,a=2
3
,則b=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在離旗桿6米的A處,放置了測角儀的支架AD,用測角儀從D測得旗桿頂端C的仰角為50°,已知測角儀高AD=1.5米,求旗桿的高度(結(jié)果保留一位小數(shù)).(備用數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,cos50°≈0.64,tan50°≈1.19)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知菱形ABCD的邊長為10cm,∠BAD=120°,則菱形的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,海上有一小島A,它的周圍8海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在B點測得小島A在北偏東60°,航行12海里到達D點,在D點測得小島A在北偏東30°,如果漁船繼續(xù)向正東方向行駛,問是否有觸礁的危險?

查看答案和解析>>

同步練習冊答案