【題目】我們給定兩個(gè)全等的正方形、,它們共頂點(diǎn)(如圖),可以繞頂點(diǎn)旋轉(zhuǎn),,相交于點(diǎn),以下各問(wèn)題都以此為前提.
問(wèn)題要求:
連接、(如圖),求證:,;
連接、(如圖),有三個(gè)結(jié)論:
①;
②;
③與位似.
請(qǐng)你從①,②,③三個(gè)結(jié)論中選擇一個(gè)進(jìn)行證明:
(說(shuō)明:選①做對(duì)的得分,選②做對(duì)的得分,選③做對(duì)的得分)
連接、(如圖),求的值.
【答案】(1)證明見(jiàn)解析;(2)①證明見(jiàn)解析;②證明見(jiàn)解析;③.
【解析】
(1)根據(jù)正方形的性質(zhì),即可得AB=AD,∠BAE=90°﹣∠EAD=∠DAG,AE=AG,由邊角邊判定方法即可證得△ABE≌△ADG,即BE=DG;∵△ABE≌△ADG,AB⊥AD,AE⊥AG,所以△ADG可以看成由△ABE繞頂點(diǎn)A旋轉(zhuǎn)90°,即BE⊥DG;
(2)根據(jù)等邊對(duì)等角即可證得BG∥CF;根據(jù)平行線的性質(zhì)可的對(duì)應(yīng)角相等,即可證得②△ABG∽△PCF;續(xù)②連接AP交GF的延長(zhǎng)線于Q1,交BC的延長(zhǎng)線于Q2,由位似的性質(zhì)即可求得;
(3)連接AC,AF,CF.可證得△ABE∽△ACF,根據(jù)相似三角形的性質(zhì)即可求得.
(1)∵AB=AD,∠BAE=90°﹣∠EAD=∠DAG,AE=AG,∴△ABE≌△ADG,即BE=DG.
分別延長(zhǎng)GD,BE交于點(diǎn)M交EF于點(diǎn)N.
∵∠MEN+∠ENM=∠MEN+∠AGD=∠BEA+∠NEM=90°,∴BE⊥GD.
(∵△ABE≌△ADG,AB⊥AD,AE⊥AG,∴△ADG可以看成由△ABE繞頂點(diǎn)A旋轉(zhuǎn)90°,即BE⊥DG.)
(2)①∵AB=AG,∴∠ABG=∠AGB,∠CBG=∠FGB,∴∠GBC=∠BGF.
又∵BC=GF,∴∠BCF=∠GFC.
又∵∠CBG+∠FGB+∠BCF+∠GFC=360°,∴∠CBG+∠BCF=180°,即BG∥CF;
②續(xù)①又∵AB∥PC,AG∥PF,∴∠ABG=∠PCF,∠AGB=∠PFC即△ABG∽△PCF;
③續(xù)②連接AP交GF的延長(zhǎng)線于Q1,交BC的延長(zhǎng)線于Q2,則==,而AB=AG,PC=PF,∴=,亦有=,Q1P=Q2P,∴Q1,Q2重合,即BC,AP,GF相交于點(diǎn)Q,△ABG與△PCF位似.
(3)連接AC,AF,CF.
∵ABCD和AEFG都是正方形,∴CA=AB,AF=AE,∠BAC=∠EAF=45°,∴AC:AF=AB:AE=AB:AE,∠BAE=∠CAF,∴△ABE∽△ACF,=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東明商場(chǎng)日用品柜臺(tái)名售貨員月完成的銷售額情況如下表:
①計(jì)算銷售額的平均數(shù)、中位數(shù)、眾數(shù).
②商場(chǎng)為了完成年度的銷售任務(wù),調(diào)動(dòng)售貨員的積極性,在一年的最后月份采取超額有獎(jiǎng)的辦法.你認(rèn)為根據(jù)上面計(jì)算結(jié)果,每個(gè)售貨員統(tǒng)一的銷售額標(biāo)準(zhǔn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,則∠1-∠2的度數(shù)是( )
A. 32° B. 64° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線剪成四個(gè)均勻的小長(zhǎng)方形,然后按圖(2)形狀拼成一個(gè)正方形.
(1)你認(rèn)為圖(2)中的陰影部分的正方形的邊長(zhǎng)等于多少?
(2)觀察圖(2),你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:,,;
(3)已知:,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF翻折,點(diǎn)A恰好落在BC邊的A′處,若AB= ,∠EFA=60°,則四邊形A′B′EF的周長(zhǎng)是( )
A. 1+3 B. 3+ C. 4+ D. 5+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點(diǎn)E,F分別是AB,AD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF.連接BF與DE相交于點(diǎn)G,CH⊥BF,垂足為H,連接CG.若DG=,BG=,且、滿足下列關(guān)系:,,則GH= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是⊙O的直徑,∠AMN=40°,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),如果PA+PB的最小值為,那么⊙O的直徑等于( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一副含和角的三角板和如圖擺放,邊與重合,.當(dāng)點(diǎn)從點(diǎn)出發(fā)沿方向滑動(dòng)時(shí),點(diǎn)同時(shí)從點(diǎn)出發(fā)沿軸正方向滑動(dòng).
設(shè)點(diǎn)關(guān)于的函數(shù)表達(dá)式為________.
連接.當(dāng)點(diǎn)從點(diǎn)滑動(dòng)到點(diǎn)時(shí),的面積最大值為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com