23、為把產(chǎn)品打入國(guó)際市場(chǎng),某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬(wàn)美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價(jià)為10萬(wàn)美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬(wàn)美元,每件產(chǎn)品銷售價(jià)為18萬(wàn)美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.在不考慮其它因素的情況下:
(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤(rùn)y1、y2與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)分別求出這兩個(gè)投資方案的最大年利潤(rùn);
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?
分析:(1)根據(jù)題意得出y1與y2與x的函數(shù)關(guān)系式;
(2)根據(jù)a的取值范圍可知y1隨x的增大而增大,可求出y1的最大值.又因?yàn)?0.05<0,可求出y2的最大值;
(3)第三問要分兩種情況決定選擇方案一還是方案二.當(dāng)2000-200a>500以及2000-200a<500.
解答:解:(1)由題意得:
y1=(10-a)x(1≤x≤200,x為正整數(shù))(2分)
y2=10x-0.05x2(1≤x≤120,x為正整數(shù));(4分)

(2)①∵3<a<8,∴10-a>0,
即y1隨x的增大而增大,(5分)
∴當(dāng)x=200時(shí),y1最大值=(10-a)×200=2000-200a(萬(wàn)美元)(6分)
②y2=-0.05(x-100)2+500(7分)
∵-0.05<0,
∴x=100時(shí),y2最大值=500(萬(wàn)美元);(8分)

(3)∵由2000-200a>500,
∴得a<7.5,
∴當(dāng)3<a<7.5時(shí),選擇方案一;(9分)
由2000-200a=500,得a=7.5,
∴當(dāng)a=7.5時(shí),選擇方案一或方案二均可;(10分)
由2000-200a<500,得a>7.5,
∴當(dāng)時(shí),選擇方案二.(12分)
點(diǎn)評(píng):本題考查二次函數(shù)的實(shí)際應(yīng)用,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

為把產(chǎn)品打入國(guó)際市場(chǎng),某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬(wàn)美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價(jià)為10萬(wàn)美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬(wàn)美元,每件產(chǎn)品銷售價(jià)為18萬(wàn)美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅.在不考慮其它因素的情況下:

(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤(rùn)、與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;

(2)分別求出這兩個(gè)投資方案的最大年利潤(rùn);

(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為把產(chǎn)品打入國(guó)際市場(chǎng),某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬(wàn)美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價(jià)為10萬(wàn)美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬(wàn)美元,每件產(chǎn)品銷售價(jià)為18萬(wàn)美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅.在不考慮其它因素的情況下:
【小題1】分別寫出該企業(yè)兩個(gè)投資方案的年利潤(rùn)、與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍
【小題2】分別求出這兩個(gè)投資方案的最大年利潤(rùn);
【小題3】如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資
方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)
為把產(chǎn)品打入國(guó)際市場(chǎng),某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬(wàn)美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價(jià)為10萬(wàn)美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬(wàn)美元,每件產(chǎn)品銷售價(jià)為18萬(wàn)美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅.在不考慮其它因素的情況下:
(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤(rùn)與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)分別求出這兩個(gè)投資方案的最大年利潤(rùn);
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012廊坊市廣陽(yáng)區(qū)中考第三次模擬數(shù)學(xué)卷(I) 題型:解答題

為把產(chǎn)品打入國(guó)際市場(chǎng),某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬(wàn)美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價(jià)為10萬(wàn)美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬(wàn)美元,每件產(chǎn)品銷售價(jià)為18萬(wàn)美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅.在不考慮其它因素的情況下:

(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤(rùn)、與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;

(2)分別求出這兩個(gè)投資方案的最大年利潤(rùn);

(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資

方案?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案