(本題8分)把兩個直角邊長均為6的等腰直角三角板ABCEFG疊放在一起(如圖①),使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFGO點順時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).

【小題1】(1) 探究:在上述旋轉過程中,BHCK的數(shù)量關系以及四邊形CHGK的面積的變化情況(直接寫出探究的結果,不必寫探究及推理過程);
  【小題2】(2) 利用(1)中你得到的結論,解決下面問題:連接HK,在上述旋轉過程中,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時BH的長度;若不存在,說明理由.

【小題1】解:(1) BHCK的數(shù)量關系:BH=CK      ……(1分)
四邊形CHGK的面積的變化情況:四邊形CHGK的面積不變,始終等于9.(說明:答出四邊形CHGK的面積不變即可)                                  ………… (2分)
【小題2】(2)假設存在使△GKH的面積恰好等于△ABC面積的的位置,
BH =,由題意及(1)中結論可得,CK = BH=,CH = CB-BH =6-,    …………(3分)
,
   …………(5分)
∵△GKH的面積恰好等于△ABC面積的,
,
解得,(經(jīng)檢驗,均符合題意)           …………(7分)
∴存在使△GKH的面積恰好等于△ABC面積的的位置,此時的值為(8分)解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2012-2013學年江蘇省鎮(zhèn)江市八年級上學期期末考試數(shù)學試卷(帶解析) 題型:解答題

(本題10分) 
在向紅星鎮(zhèn)居民介紹王家莊位置的時候,我們可以這樣說:如圖,在以紅星鎮(zhèn)為原點,正東方向為x軸正方向,正北方向為y軸正方向的平面直角坐標系(1單位長度表示的實際距離為1km)中,王家莊的坐標為(5,5);也可以說,王家莊在紅星鎮(zhèn)東北方向km的地方。
 
還有一種方法廣泛應用于航海、航空、氣象、軍事等領域。如右下圖:在紅星鎮(zhèn)所建的雷達站O的雷達顯示屏上,把周角每15°分成一份,正東方向為0°,相鄰兩圓之間的距離為1個單位長度(1單位長度表示的實際距離為1km),現(xiàn)發(fā)現(xiàn)2個目標,我們約定用(10,15°)表示點M在雷達顯示器上的坐標,則:

(1)點N可表示為          ;王家莊位置可表示為          ;點N關于雷達站點0成中心對稱的點P的坐標為         ;
(2)S△OMP=                 ;
(3)若有一家大型超市A在圖中(4,30°)的地方,請直接標出點A,并將超市A與雷達站O連接,現(xiàn)準備在雷達站周圍建立便民服務店B,使得△ABO為底角30°的等腰三角形,請直接寫出B點在雷達顯示屏上的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省鎮(zhèn)江市八年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

(本題10分) 

在向紅星鎮(zhèn)居民介紹王家莊位置的時候,我們可以這樣說:如圖,在以紅星鎮(zhèn)為原點,正東方向為x軸正方向,正北方向為y軸正方向的平面直角坐標系(1單位長度表示的實際距離為1km)中,王家莊的坐標為(5,5);也可以說,王家莊在紅星鎮(zhèn)東北方向km的地方。

 

還有一種方法廣泛應用于航海、航空、氣象、軍事等領域。如右下圖:在紅星鎮(zhèn)所建的雷達站O的雷達顯示屏上,把周角每15°分成一份,正東方向為0°,相鄰兩圓之間的距離為1個單位長度(1單位長度表示的實際距離為1km),現(xiàn)發(fā)現(xiàn)2個目標,我們約定用(10,15°)表示點M在雷達顯示器上的坐標,則:

(1)點N可表示為          ;王家莊位置可表示為          ;點N關于雷達站點0成中心對稱的點P的坐標為         ;

(2)S△OMP=                 ;

(3)若有一家大型超市A在圖中(4,30°)的地方,請直接標出點A,并將超市A與雷達站O連接,現(xiàn)準備在雷達站周圍建立便民服務店B,使得△ABO為底角30°的等腰三角形,請直接寫出B點在雷達顯示屏上的坐標.

 

查看答案和解析>>

同步練習冊答案