如圖,在平面直角坐標中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,ABOC,∠AOC=90°,∠BCO=45°,BC=12
2
,點C的坐標為(-18,0)
(1)求點B的坐標;
(2)若直線DE交梯形對角線BO于點D,交y軸于點E,且OE=4,OD=2BD,求直線DE的解析式.
(1)過點B作BF⊥x軸于F,
在Rt△BCF中,∠BCO=45°,
∴∠CBF=45°,
∵BC=12
2
,
∴CF=BF=12,
∵點C的坐標為(-18,0),
∴AB=OF=18-12=6.
∴點B的坐標為(-6,12).

(2)過點D作DG⊥y軸于點G.
∵ABDG,
∴△ODG△OBA,
DG
AB
=
OG
OA
=
OD
OB
=
2
3

∵AB=6,OA=12,
∴DG=4,OG=8.
∴D(-4,8),E(0,4),
設(shè)直線DE的解析式為y=kx+b(k≠0),將D(-4,8),E(0,4)代入,得
-4k+b=8
b=4
,
解得
k=-1
b=4.

∴直線DE解析式為y=-x+4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)過點(-2,3)和(2,-1).
(1)求這個函數(shù)的解析式;
(2)在直角坐標系內(nèi)畫出這個函數(shù)的圖象;
(3)當0<x<4時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知矩形OABC點B的坐標是(3,2),對角線AC所在直線為l,求直線l對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某種商品的利潤是銷售額的25%,設(shè)銷售額是x(萬元),利潤是y(萬元).
(1)寫y與x的函數(shù)關(guān)系式;
(2)畫出函數(shù)圖象;
(3)若要使利潤達到50萬元,則銷售額應(yīng)是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知等腰三角形周長為20,則底邊長y關(guān)于腰長x的函數(shù)圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

齊齊哈爾至哈爾濱的高速公路長約300千米,甲、乙兩車同時分別從距齊齊哈爾240千米,60千米的入口進入高速公路并正常行駛.甲車駛往齊齊哈爾、乙車駛往哈爾濱.甲車在行駛過程中速度始終不變,甲車離齊齊哈爾的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象如圖所示.
(1)求出甲車離齊齊哈爾的距離y(千米)與行駛時間x(時)之間的函數(shù)表達式;
(2)乙車若以60千米/時的速度勻速行駛,1小時后兩車相距多少千米?
(3)乙車按(2)中狀態(tài)行駛與甲車相遇后,速度改為a千米/時,結(jié)果兩車同時到達齊齊哈爾、哈爾濱,求乙車變化后的速度a;并在如圖所示的直角坐標系中,畫出乙離齊齊哈爾的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某縣為實現(xiàn)經(jīng)濟跨越,高度重視交通事業(yè)的發(fā)展.現(xiàn)有甲、乙兩個工程隊分別同時建筑兩條水泥路面,所建路的長度y(m)與建筑的時間t(h)之間關(guān)系如下圖所示,請根據(jù)圖象提供的信息解答下列問題:
(1)乙隊筑路到40m時,用了______h.筑路5h時,甲隊比乙隊多筑了______m.
(2)請你求出
①甲隊在0≤x≤5的時段內(nèi),y與x的函數(shù)關(guān)系式.
②乙隊在2≤x≤5的時段內(nèi),y與x的函數(shù)關(guān)系式.
(3)筑路多長時間時,甲、乙兩隊筑路的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知點A(8,0)及在第一象限的動點P(x,y),且x+y=10,設(shè)△OPA的面積為S.
(1)求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求S=12時P點坐標;
(3)在(2)的基礎(chǔ)上,設(shè)點Q為y軸上一動點,當PQ+AQ的值最小時,求Q點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請根據(jù)圖中給出的數(shù)據(jù)信息,解答問題:
(1)求整齊疊放在桌面上飯碗的高度y(cm)與飯碗數(shù)x(個)之間的一次函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)若桌面上有12個飯碗,整齊疊放成一摞,求出它的高度.

查看答案和解析>>

同步練習(xí)冊答案