【題目】如圖,長(zhǎng)方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=9,AB=CD=15.點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),△ADE與△AD′E關(guān)于直線AE對(duì)稱,當(dāng)△AD′B為直角三角形時(shí),DE為_________.
【答案】3或27
【解析】解:如圖1,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三點(diǎn)共線,又∵ABD′∽△BEC,AD′=BC=9,∴ABD′≌△BEC,∴BE=AB=15,∵BD′= = =12,∴DE=D′E=15﹣12=3;
如圖2,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵∠D″=∠BCE,AD″=BC,∠BAD″=∠CBE,∴△ABD″≌△BEC,∴BE=AB=15,∴DE=D″E=15+12=27.
綜上所知,DE=3或27.故答案為:3或27.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于A(1,0),B(﹣4,0)兩點(diǎn),
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)設(shè)此拋物線與直線y=﹣x在第二象限交于點(diǎn)D,平行于y軸的直線x=m,()與拋物線交于點(diǎn)M,與直線y=﹣x交于點(diǎn)N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請(qǐng)求出m的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個(gè)直角三角形ACB(∠ACB=90°)繞著頂點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長(zhǎng)CF與DG交于點(diǎn)H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,F(xiàn)為⊙O上一點(diǎn),AC平分∠BAF且交⊙O于點(diǎn)C,過點(diǎn)C作CD⊥AF于點(diǎn)D,延長(zhǎng)AB、DC交于點(diǎn)E,連接BC、CF.
(1)求證:CD是⊙O的切線;
(2)若AD=6,DE=8,求BE的長(zhǎng);
(3)求證:AF+2DF=AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com