【題目】已知:如圖,∠MAN=90°,線段a和線段b
求作:矩形ABCD,使得矩形ABCD的兩條邊長分別等于線段a和線段b.
下面是小東設計的尺規(guī)作圖過程.
作法:如圖,
①以點A為圓心,b為半徑作弧,交AN于點B;
②以點A為圓心,a為半徑作弧,交AM于點D;
③分別以點B、點D為圓心,a、b長為半徑作弧,兩弧交于∠MAN內(nèi)部的點C;
④分別連接BC,DC.
所以四邊形ABCD就是所求作的矩形.
根據(jù)小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:
∵AB= ;AD= ;
∴四邊形ABCD是平行四邊形.
∵∠MAN=90°;
∴四邊形ABCD是矩形( ).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b過x軸上的點A(2,0),且與拋物線交于B,C兩點,點B坐標為(1,1).
(1)求直線與拋物線對應的函數(shù)表達式;
(2)當時,請根據(jù)圖象寫出自變量x的取值范圍;
(3)拋物線上是否存在一點D,使?若存在,求出D點坐標;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖拋物線y=ax2+bx+與y軸交于點A,與x軸交于點B、點C.連接AB,以AB為邊向右作平行四邊形ABDE,點E落在拋物線上,點D落在x軸上,若拋物線的對稱軸恰好經(jīng)過點D,且∠ABD=60°,則這條拋物線的解析式為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.
問題發(fā)現(xiàn)
如圖,若四邊形ABCD是矩形,且于G,,填空:______;當矩形ABCD是正方形時,______;
拓展探究
如圖,若四邊形ABCD是平行四邊形,試探究:當與滿足什么關(guān)系時,成立?并證明你的結(jié)論;
解決問題
如圖,若于G,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠接到一批訂單,按要求要20天內(nèi)完成,每件產(chǎn)品的出廠價為40元,每件產(chǎn)品的生產(chǎn)成本m元與時間x天(x為整數(shù))之間的一次函數(shù)關(guān)系如下表:
天數(shù)(x) | 1 | 4 | 6 | … |
每件成本(m) | 23 | 20 | 18 | … |
小張每天生產(chǎn)的件數(shù)y件與x天(x為整數(shù))之間滿足如下關(guān)系為:.
(1)求m與x之間的函數(shù)關(guān)系式;
(2)若第x天的利潤為W元,求W與x之間的函數(shù)關(guān)系式,并求出小張在哪天利潤最大,最大利潤是多少元;
(3)在生產(chǎn)的前10天中,公司決定每件產(chǎn)品捐贈a元(a<7)給公益事業(yè),調(diào)查發(fā)現(xiàn),扣除捐贈后的日銷售利潤隨x增大而增大,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+4(a≠0)與y軸交于點A.
(1)求點A的坐標和拋物線的對稱軸;
(2)過點B(0,3)作y軸的垂線l,若拋物線y=ax2﹣4ax+4(a≠0)與直線l有兩個交點,設其中靠近y軸的交點的橫坐標為m,且|m|<1,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】哈市某中學為了豐富校園文化生活.校學生會決定舉辦演講、歌唱、繪畫、舞蹈四項比賽,要求每位學生都參加.且只能參加一項比賽.圍繞“你參賽的項目是什么?(只寫一項)”的問題,校學生會在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查。將調(diào)查問卷適當整理后繪制成如圖所示的不完整的條形統(tǒng)計圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為1:3.請你根據(jù)以上信息回答下列問題:
(1)通過計算補全條形統(tǒng)計圖;
(2)在這次調(diào)查中,一共抽取了多少名學生?
(3)如果全校有680名學生,請你估計這680名學生中參加演講比賽的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=2,BC=5,點I為△ABC的內(nèi)心,將∠BAC平移,使其頂點與點I重合,則圖中陰影部分的周長為( )
A.4B.5C.6D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是拋物線上兩點,則y1<y2,其中正確的結(jié)論有( )個
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com