(2011•畢節(jié)地區(qū))已知梯形ABCD中,AD∥BC,AB=AD(如圖所示),∠BAD的平分線(xiàn)AE交BC于點(diǎn)E,連接DE.
(1)在下圖中,用尺規(guī)作∠BAD的平分線(xiàn)AE(保留作圖痕跡不寫(xiě)作法),并證明四邊形ABED是菱形.
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.
證明:(1)梯形ABCD中,AD∥BC,
∴四邊形ABED是平行四邊形,
又AB=AD,
∴四邊形ABED是菱形;
(2)∵四邊形ABED是菱形,∠ABC=60°,
∴∠DEC=60°,AB=ED,
又EC=2BE,
∴EC=2DE,
∴△DEC是直角三角形,
∴ED⊥DC.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)多邊形的內(nèi)角和是外角和的2倍,則這個(gè)多邊形的邊數(shù)為(    )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•南充)如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.
(1)求證:△ABE∽△DFE
(2)若sin∠DFE=,求tan∠EBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,對(duì)角線(xiàn)把等腰梯形分成了四個(gè)小三角形,任意選取其中兩個(gè)小三角形是全等三角形的概率是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011貴州安順,25,10分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線(xiàn)DEBCD,交ABE,FDE上,且AF=CE=AE
⑴說(shuō)明四邊形ACEF是平行四邊形;
⑵當(dāng)∠B滿(mǎn)足什么條件時(shí),四邊形ACEF是菱形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在四條平行線(xiàn)l1、l2、l3、l4上,這四條直
線(xiàn)中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h2;
(2)設(shè)正方形ABCD的面積為S,求證:S=(h1+h2)2+h12;
(3)若h1+h2=1,當(dāng)h1變化時(shí),說(shuō)明正方形ABCD的面積S隨h1的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形紙片ABCD中,AD//BC,∠A=90º,∠C=30º.折疊紙片使BC經(jīng)過(guò)點(diǎn)D,點(diǎn)C落在點(diǎn)E處,BF是折痕,且BF=CF=8.
(1)求∠BDF的度數(shù);
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,將矩形ABCD對(duì)折,得折痕PQ,再沿MN翻折,使點(diǎn)C恰好落在折痕PQ上的點(diǎn)C′處,點(diǎn)D落在D′處,其中MBC的中點(diǎn).連接AC′,BC′,則圖中共有等腰三角形的個(gè)數(shù)是                 (    ).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)PBC上運(yùn)動(dòng),連結(jié)DP,過(guò)點(diǎn)AAEDP,垂足為E.設(shè)DP=x,AE=y,則能反映yx之間函數(shù)關(guān)系的大致圖象是(   ).
 

查看答案和解析>>

同步練習(xí)冊(cè)答案