【題目】如圖,長方形ABOD的頂點A是函數(shù)y=-x-(k+1)的圖象與函數(shù)y=在第二象限的圖象的交點,B,D兩點在坐標(biāo)軸上,且長方形ABOD的面積為3.

(1)求兩函數(shù)的表達(dá)式;

(2)求兩函數(shù)圖象的交點A,C的坐標(biāo);

(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

【答案】(1)反比例函數(shù)的表達(dá)式為y=-,一次函數(shù)的表達(dá)式為y=-x+2(2)點A,C的坐標(biāo)分別為(-1,3),(3,-1)(3)點P的坐標(biāo)為(0, )或(0,-

【解析】試題分析:1)根據(jù)圖象所在的象限結(jié)合矩形ABOD的面積,就能求出k的值,進(jìn)而求出兩函數(shù)的表達(dá)式;

2)將兩函數(shù)解析式聯(lián)立消元,求出其解,即得到交點A、C的坐標(biāo);

3),設(shè)點P的坐標(biāo)為(0m),直線y=-x+2y軸的交點坐標(biāo)為M0,2),根據(jù)SAPC=SAMP+SCMP=5解答即可.

試題解析:(1由圖象知k0,由已知條件得|k|3,

k=-3.

∴反比例函數(shù)的表達(dá)式為y=-

一次函數(shù)的表達(dá)式為y=-x2.

2y=-y=-x2可得,- =-x2,

去分母整理后得x22x30,

x22x140,

(x1)24

x1±2,

x1=-1x23.

y13,y2=-1.

∴點AC的坐標(biāo)分別為(1,3)(3,-1). 

3設(shè)點P的坐標(biāo)為(0,m),直線y=-x2y軸的交點為M,則M的坐標(biāo)為(0,2)

SAPCSAMPSCMP×PM×(|1||3|)5,

PM,即|m2|.

mm=-.

∴點P的坐標(biāo)為(0 )或(0,-. 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市開展“陽光”活動中,為解中學(xué)生活動開展情況,隨機(jī)抽查全市八年級部分同學(xué)1分鐘,將抽查結(jié)果進(jìn)行,并繪制兩個不完整圖.請根據(jù)圖中提供信息,解答問題:

(1)本次共抽查多少名學(xué)生?
(2)請補(bǔ)全直方圖空缺部分,直接寫扇形圖中范圍135≤x<155所在扇形圓心角度數(shù).
(3)若本次抽查中,在125次以上(含125次)為優(yōu)秀,請你估計全市8000名八年級學(xué)生中有多少名學(xué)生成績?yōu)閮?yōu)秀?
(4)請你根據(jù)以上信息,對我市開展學(xué)生活動談?wù)勛约嚎捶ɑ蚪ㄗh

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店計劃購進(jìn)甲、乙兩種新型汽車共140輛,這兩種汽車的進(jìn)價、售價如下表:

進(jìn)價(萬元/輛)

售價(萬元/輛)

5

8

9

13

(1)若該汽車專賣店投入1000萬元資金進(jìn)貨,則購進(jìn)甲乙兩種新型汽車各多少輛?

(2)若該汽車專賣店準(zhǔn)備乙種型號汽車的進(jìn)貨量不超過甲種型號汽車的進(jìn)貨量的3倍,應(yīng)怎樣安排進(jìn)貨方案,才能使該汽車專賣店售完這兩種新型汽車后獲得的利潤最大?最大利潤是多少?(其它成本不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三邊分別為a,b,c,△A'B'C'的三邊分別為a',b',c',且有a2+a'2+b2+b'2+c2+c'2=2ab'+2bc'+2ca',則△ABC與△A'B'C'( )

A. 一定全等 B. 不一定全等 C. 一定不全等 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果|a|=a,則(
A.a是正數(shù)
B.a是負(fù)數(shù)
C.a是零
D.a 是正數(shù)或零

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P(m+3,m﹣2)在直角坐標(biāo)系的x軸上,則點P的坐標(biāo)為(
A.(0,5)
B.(5,0)
C.(﹣5,0)
D.(0,﹣5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面各對數(shù)中互為相反數(shù)的是(
A.2與﹣|﹣2|
B.﹣2與﹣|2|
C.|﹣2|與|2|
D.2與﹣(﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知:在ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖3,D、ED、A、E三點所在直線m上的兩動點(D、A、E三點

互不重合),點F為∠BAC平分線上的一點,且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DGAE,垂足為G,若DG=1,則AE的邊長為( ).

A.2 B.4 C.4 D.8

查看答案和解析>>

同步練習(xí)冊答案