11.有一個長、寬、高分別是15cm,10cm,30cm的長方體鋼錠,現(xiàn)將它鍛壓成一個底面為正方形,且邊長為15cm的長方體鋼錠,高變成了20.(忽略鍛壓過程中的損耗)

分析 設(shè)長方體鋼錠的高為xcm,利用鋼錠的體積不變列方程15•15•x=15•10•30,然后解一元一次方程即可.

解答 解:設(shè)長方體鋼錠的高為xcm,
根據(jù)題意得15•15•x=15•10•30,
解得x=20.
答:長方體鋼錠的高為20cm.
故答案為20.

點評 本題考查了一元一次方程的應(yīng)用:首先審題找出題中的未知量和所有的已知量,直接設(shè)要求的未知量或間接設(shè)一關(guān)鍵的未知量為x,然后用含x的式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設(shè)、列、解、答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.解方程(組)
(1)$\left\{\begin{array}{l}{\frac{x}{4}+\frac{y}{3}=3}\\{3x-2(y-1)=11}\end{array}\right.$
(2)$\frac{1}{x+1}$+$\frac{2}{x-1}$=$\frac{7}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知△ABC的三邊分別為a,b,c,且a+b=3,ab=1,c=$\sqrt{7}$.
(1)求a2+b2的值;
(2)試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知方程組$\left\{\begin{array}{l}{2x+y=5k+6}\\{x-2y=-17}\end{array}\right.$的解x,y都是正數(shù),且x的值小于y的值.
(1)求k的取值范圍;
(2)當k為整數(shù)時,設(shè)其所有整數(shù)的和為S,求S的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.若對于任何實數(shù)x,分式$\frac{1}{{x}^{2}+4x+c}$總有意義,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.先化簡,再求值:$\frac{a-3}{2a-4}$÷($\frac{5}{a-2}$-a-2),其中x=$\sqrt{5}$-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標系中,直線y=$\frac{4}{3}$x+8與x軸交于點A,與y軸交于點B,拋物線y=ax2+bx+c經(jīng)過A、B兩點,并交x正半軸于點C,且AB=AC.
(1)求拋物線的解析式;
(2)∠BAC的角平分線交y軸于點D,動點P從點A出發(fā),沿射線AD運動,過點P作x軸的垂線交拋物線于點Q:設(shè)點P的橫坐標為m,線段PQ的長度為d,求d與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線PQ交x軸于點G,在x軸上方的拋物線上,是否存在點R,使以A、D、G、R為頂點的四邊形是平行四邊形?若存在請求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標系中,二次函數(shù)定點坐標為c(4,-$\sqrt{3}$),且在x軸上截得的線段AB為6.
(1)求A,B坐標;
(2)點p在y上,且使得△PAC周長最小,求P點坐標;
(3)在x軸上方的拋物線上是否存在點Q,使得以Q,A,B三點為頂點的三角形與三角形ABC相似?若存在請求出Q點坐標;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.若用初中數(shù)學(xué)課本上使用的科學(xué)計算器進行計算,則以下按鍵的結(jié)果為-1.

查看答案和解析>>

同步練習(xí)冊答案