【題目】為了了解某學(xué)校七年級4個(gè)班共180人的體質(zhì)健康情況,從各班分別抽取同樣數(shù)量的男生和女生組成一個(gè)樣本,把體質(zhì)情況量化得分,規(guī)定得分x滿足x60為不及格,60≤x80為及格,80≤x90為良好,≥90為優(yōu)秀,下圖是根據(jù)樣本數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)本次抽查的樣本容量是

2)請補(bǔ)全條形圖上的數(shù)字和扇形圖中的百分?jǐn)?shù).

3)請你估計(jì)全校七年級得分不低于90分的約有多少人.

【答案】140;(2)見解析;(354

【解析】

1)利用不及格人數(shù)除以不及格人數(shù)所占百分比可得抽查的樣本容量;

2)利用條形圖計(jì)算出及格人數(shù),再根據(jù)樣本容量計(jì)算出及格人數(shù)和良好人數(shù)所占百分比即可;

3)利用樣本估計(jì)總體的方法用180乘以樣本中得分不低于90分的人數(shù)所占百分比可得答案.

解:(13÷7.5%=40

故答案為:40;

2)及格人數(shù)40-3-17-12=8,

及格所占百分比:8÷40×100%=20%,

良好所占百分比:17÷40×100%=42.5%;

3180×30%=54(人),

答:估計(jì)全校七年級得分不低于90分的約有54人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點(diǎn)A(﹣3,0),B0,3),且其對稱軸為直線x=﹣1

1)求此拋物線的解析式;

2)若點(diǎn)P是拋物線上點(diǎn)A與點(diǎn)B之間的動點(diǎn)(不包括點(diǎn)A,點(diǎn)B),求PAB的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于半圓,AB為直徑,過點(diǎn)A作直線MN,若∠MAC=∠ABC

1)求證:MN是半圓的切線.

2)設(shè)D是弧AC的中點(diǎn),連接BDACG,過DDEABE,交ACF,求證:FD=FG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,若水面下降2m,則水面寬度增加( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCO為矩形,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且點(diǎn)B的坐標(biāo)為(2,1),將此矩形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得矩形DEFO,拋物線y=-x2+bx+c過B、E兩點(diǎn).

(1)求此拋物線的函數(shù)解析式.

(2)將矩形DEFO向右平移,當(dāng)點(diǎn)E的對應(yīng)點(diǎn)E’在拋物線上時(shí),求線段DF掃過的面積.

(3)若將矩形ABCO向上平移d個(gè)單位長度后,能使此拋物線的頂點(diǎn)在此矩形的邊上,求d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+2ax+cx軸交于A-3,0)、B兩點(diǎn),與y軸交于C點(diǎn),ABC的面積為6,拋物線頂點(diǎn)為M

1)如圖1,求拋物線的解析式;

2)如圖2,直線y=kx+k-3與拋物線交于P、Q兩點(diǎn)(P點(diǎn)在Q點(diǎn)左側(cè)),問在y軸上是否存在點(diǎn)N,使四邊形PMQN為矩形?若存在,求N點(diǎn)坐標(biāo),若不存在,請說明理由;

3)如圖3,若D為拋物線上任意一點(diǎn),E-1,s)為對稱軸上一點(diǎn),若對任意一點(diǎn)D都有ED≥EM,求s的最大值及相應(yīng)E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅樹林學(xué)校在七年級新生中舉行了全員參加的防溺水安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個(gè)班中各隨機(jī)取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:

1班:9070,80,80,8080,80,9080,100;

2班:70,80,80,80,6090,9090,10090;

3班:90,6070,80,80,80,8090,100,100

整理數(shù)據(jù):

分?jǐn)?shù)

人數(shù)

班級

60

70

80

90

100

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

1

83

80

80

2

83

3

80

80

根據(jù)以上信息回答下列問題:

1)請直接寫出表格中的值;

2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績比較好?請說明理由;

3)為了讓學(xué)生重視安全知識的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎(jiǎng)狀,該校七年級新生共570人,試估計(jì)需要準(zhǔn)備多少張獎(jiǎng)狀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,CD是圓O的直徑,AE是圓O的弦,且AECD,過點(diǎn)C的圓O切線與EA的延長線交于點(diǎn)P,連接AC

1)求證:AC平分∠BAP;

2)求證:PC2=PAPE

3)若AE-AP=PC=4,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

1)如圖1,已知△ABC,試確定一點(diǎn)D,使得以A,BC,D為頂點(diǎn)的四邊形為平行四邊形,請畫出這個(gè)平行四邊形;

問題探究:

2)如圖2,在矩形ABCD中,AB=4,BC=10,若要在該矩形中作出一個(gè)面積最大的△BPC,且使∠BPC90°,求滿足條件的點(diǎn)P到點(diǎn)A的距離;

問題解決:

3)如圖3,有一座草根塔A,按規(guī)定,要以塔A為對稱中心,建一個(gè)面積盡可能大的形狀為平行四邊形的草根景區(qū)BCDE。根據(jù)實(shí)際情況,要求頂點(diǎn)B是定點(diǎn),點(diǎn)B到塔A的距離為50米,∠CBE=120°,那么,是否可以建一個(gè)滿足要求的面積最大的平行四邊形景區(qū)BCDE?若可以,求出滿足要求的平行四邊形BCDE的最大面積;若不可以,請說明理由。(塔A的占地面積忽略不計(jì))

查看答案和解析>>

同步練習(xí)冊答案