【題目】如圖,邊長為4正方形ABCD中,E為邊AD的中點,連接線段ECBD于點F,點M是線段CE延長線上的一點,且∠MAF為直角,則DM的長為_____

【答案】

【解析】

MNAD,先證明MA=ME,進而求出AN=NE=1,利用MNCD,求出MN,在RtMND中利用勾股定理即可求出DM

MNAD垂足為N,

∵四邊形ABCD是正方形,

AB=BC=CD=AD,∠ABF=∠CBF,BCAD,∠BAD=∠CDA=90°,

BF=BF

∴△BFA≌△BFC

∴∠BAF=∠BCF=∠CED=∠AEM,

∵∠MAF=∠BAD=90°,

∴∠BAF=∠MAE,

∴∠MAE=∠AEM

MA=ME,

AE=ED=AD=2,

∵∠MNE=∠CDE=90°,

MNCD

,

CD=4,

MN=2,

RtMND中,

MN=2,DN=3

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標分別是,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,DEF分別為△ABCACABBC上的點,∠A=∠1=∠C,DE=DF.下面的結(jié)論一定成立的是(

A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班共30名同學(xué)參加了網(wǎng)絡(luò)上第二課堂的禁毒知識競賽(共20道選擇題),學(xué)習(xí)委員對競賽結(jié)果進行了統(tǒng)計,發(fā)現(xiàn)每個人答題正確題數(shù)都超過15題.通過統(tǒng)計制成了下表,結(jié)合表中信息,解答下列問題:

答對題數(shù)

16

17

18

19

20

人數(shù)

3

9

6

4

1)補統(tǒng)計表中數(shù)據(jù):

2)求這30名同學(xué)答對題目的平均數(shù)、眾數(shù)和中位數(shù);

3)答題正確率為100%4名同學(xué)中恰好是2名男同學(xué)和2名女同學(xué),現(xiàn)從中隨機抽取2名同學(xué)參加學(xué)校禁毒知識搶答大賽,問抽到11女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB為⊙O直徑,弦CDAB,垂足為H,點E為⊙O上一點,BECD交于點F

1)如圖1,求證:BHFH

2)如圖2,過點FFGBE,分別交ACAB于點G、N,連接EG,求證:EBEG;

3)如圖3,在(2)的條件下,延長EG交⊙OM,連接CM、BG,若ON1,△CMG的面積為6,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A60°,點DAC上,連接BD作等邊三角形BDE,連接OE

(1)如圖1,求證:OEAD;

(2)如圖2,連接CE,求證:∠OCE=∠ABD;

(3)如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF2OE,延長BD到點M使BDDM,連接MF,若tanBMF,OD3,求線段CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線yx+3x軸、y軸分別相于點A和點B,點C在線段AO上.

將△CBO沿BC折疊后,點O恰好落在AB邊上點D

1)求直線BC的解析式;

2)求點D的坐標;

3P為平面內(nèi)一動點,且以AB、C、P為頂點的四邊形為平行四邊形,直接寫出點P坐標   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yx軸交于AB兩點(點A在點B的左側(cè)),與y軸交于點C

1)判斷△ABC的形狀;

2)過點C的直線yx軸于點H,若點P是第四象限內(nèi)拋物線上的一個動點,且在對稱軸的右側(cè),過點PPQy軸交直線CH于點Q,作PNx軸交對稱軸于點N,以PQ、PN為鄰邊作矩形PQMN,當(dāng)矩形PQMN的周長最大時,在y軸上有一動點K,x軸上有一動點T,一動點G從線段CP的中點R出發(fā)以每秒1個單位的速度沿RKT的路徑運動到點T,再沿線段TB以每秒2個單位的速度運動到B點處停止運動,求動點G運動的最少時間及此時點T的坐標;

3)如圖2,將△ABC繞點B順時針旋轉(zhuǎn)至△A'BC'的位置,點A、C的對應(yīng)點分別為A'、C',且點C'恰好落在拋物線的對稱軸上,連接AC'.點Ey軸上的一個動點,連接AE、C'E,將△AC'E沿直線C'E翻折為△AC'E,是否存在點A',使得△BAA″為等腰三角形?若存在,請求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解中考體育科目訓(xùn)練情況,某縣從全縣九年級學(xué)生中隨機抽取了部分學(xué)生進行了一次中考體育科目測試(把測試結(jié)果分為四個等級:級:優(yōu)秀;級:良好;級:及格;級:不及格),并將測試結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學(xué)生人數(shù)是 人;

2)圖1的度數(shù)是 ,并把圖2條形統(tǒng)計圖補充完整;

3)該縣九年級有學(xué)生4500名,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)為

4)老師想從4位同學(xué)(分別記為、,其中為小明)中隨機選擇兩位同學(xué)了解平時訓(xùn)練情況,請用列表或畫樹形圖的方法求出選中小明的概率.

查看答案和解析>>

同步練習(xí)冊答案