如圖,矩形ABCD中,以對角線BD為一邊構(gòu)造一個(gè)矩形BDEF,使得另一邊EF過原矩形的頂點(diǎn)C.

(1)設(shè)Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1      S2+S3(用“>”、“=”、“<”填空);
(2)寫出如圖中的三對相似三角形,并選擇其中一對進(jìn)行證明.

(1)=   (2)△BCD∽△CFB∽△DEC,證明見解析

解析思路分析:(1)根據(jù)S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.
(2)根據(jù)矩形的性質(zhì),結(jié)合圖形可得:△BCD∽△CFB∽△DEC,選擇一對進(jìn)行證明即可.
解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,
∴S1=S矩形BDEF,
∴S2+S3=S矩形BDEF,
∴S1=S2+S3
(2)答:△BCD∽△CFB∽△DEC.
證明△BCD∽△DEC;
證明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,
∴∠EDC=∠CBD,
又∵∠BCD=∠DEC=90°,
∴△BCD∽△DEC.
點(diǎn)評:本題考查了相似三角形的判定,注意掌握相似三角形的判定定理,最經(jīng)常用的就是兩角法,此題難度一般.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

巡警小張?jiān)诜缸铿F(xiàn)場發(fā)現(xiàn)一只腳印,他把隨身攜帶的一百元鈔票放在腳印旁進(jìn)行拍照,照片送到刑事科,他們測得照片中的腳印和鈔票的長度分別為5cm和3.1cm,一張百元鈔票的實(shí)際長度大約為15.5cm,請問腳印的實(shí)際長度為_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個(gè)用足夠長的的細(xì)鐵絲制作的直角的頂點(diǎn)D放在直角三角板ABC的斜邊AB上,再將該直角繞點(diǎn)D旋轉(zhuǎn),并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點(diǎn)。
問題探究:(1)在旋轉(zhuǎn)過程中,
①如圖2,當(dāng)AD=BD時(shí),線段DP、DQ有何數(shù)量關(guān)系?并說明理由。
②如圖3,當(dāng)AD=2BD時(shí),線段DP、DQ有何數(shù)量關(guān)系?并說明理由。
③根據(jù)你對①、②的探究結(jié)果,試寫出當(dāng)AD=nBD時(shí),DP、DQ滿足的數(shù)量關(guān)系為_______________(直接寫出結(jié)論,不必證明)
(2)當(dāng)AD=BD時(shí),若AB=20,連接PQ,設(shè)△DPQ的面積為S,在旋轉(zhuǎn)過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由。

圖1              圖2                 圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,動點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5 cm的速度向點(diǎn)A勻速運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4 cm的速度向點(diǎn)B勻速運(yùn)動,運(yùn)動時(shí)間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值;
(3)試證明:PQ的中點(diǎn)在△ABC的一條中位線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點(diǎn)D在邊AC上,點(diǎn)E,F(xiàn)在邊AB上,點(diǎn)G在邊BC上.

⑴求證:△ADE≌△BGF;
⑵若正方形DEFG的面積為16,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC中,∠ACB=90°,AC=BC,點(diǎn)E、F在AB上,∠ECF=45°.求證:△ACF∽△BEC;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖,在平行四邊形ABCD中,E、F分別是邊BC、CD上的點(diǎn),且EF∥BD,AE、AF分別交BD于點(diǎn)G和點(diǎn)H,BD=12,EF=8。求:(1)的值。(2)線段GH的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,DE∥BC,EF∥AB.證明:△ADE∽△EFC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連結(jié)PC,過點(diǎn)P作PE⊥PC交AB于E.

(1)證明△PAE∽△CDP;
(2)當(dāng)點(diǎn)P在AD上運(yùn)動時(shí),對應(yīng)的點(diǎn)E也隨之在AB上運(yùn)動,設(shè)AP=x,BE=y(tǒng),求y與x的函數(shù)關(guān)系式及y的取值范圍;
(3)在線段AD上是否存在不同于P的點(diǎn)Q,使得QC⊥QE?若存在,求線段AP與AQ之間的數(shù)量關(guān)系;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案