【題目】一次函數y=﹣x+2的圖象與x軸,y軸分別交于A、B兩點,以AB為腰,作等腰Rt△ABC,則直線BC的解析式為( 。
A. y=x+2 B. y=﹣x+2 C. y=﹣x+2 D. y=x+2
【答案】D
【解析】
先根據一次函數的解析式求出A、B兩點的坐標,再作CE⊥x軸于點E,由全等三角形的判定定理可得出△ABO≌△CAE,得出C點坐標,用待定系數法即可求出直線BC的解析式;
解:∵一次函數y=﹣x+2中,
令x=0得:y=2;令y=0,解得x=5,
∴B的坐標是(0,2),A的坐標是(5,0).
如圖,作CE⊥x軸于點E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO與△CAE中,
,
∴△ABO≌△CAE(AAS),
∴OB=AE=2,OA=CE=5,
∴OE=OA+AE=2+5=7.
則C的坐標是(7,5).
設直線BC的解析式是y=kx+b,
根據題意得: ,
解得 ,
∴直線BC的解析式是y= x+2.
故選:D.
科目:初中數學 來源: 題型:
【題目】我市新城區(qū)環(huán)形路的拓寬改造工程項目,經投標決定由甲、乙兩個工程隊共同完成這一工程項目.已知乙隊單獨完成這項工程所需天數是甲隊單獨完成這項工程所需天數的2倍;該工程如果由甲隊先做6天,剩下的工程再由甲、乙兩隊合作16天可以完成.求甲、乙兩隊單獨完成這項工程各需要多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應區(qū)“美麗廣西 清潔鄉(xiāng)村”的號召,某校開展“美麗廣西 清潔校園”的活動,該校經過精心設計,計算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項綠化工作,將每天的工作量提高為原來的1.2倍.結果一共用20天完成了該項綠化工作.
(1)該項綠化工作原計劃每天完成多少m2?,
(2)在綠化工作中有一塊面積為170m2的矩形場地,矩形的長比寬的2倍少3m,請問這塊矩形場地的長和寬各是多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地植物園從正門到側門有一條小路,甲徒步從正門出發(fā)勻速走向側門,乙與甲同時出發(fā),騎自行車從側門勻速前往正門到達正門后休息0.2小時,然后按原路原速勻速返回側門,圖中折線分別表示甲、乙到側門的距離y(km)與出發(fā)時間x(h)之間的函數關系圖象,根據圖象信息解答下列問題:
(1)求甲到側門的距離y與x之間的函數關系式;
(2)求甲、乙第一次相遇時到側門的距離.
(3)求甲、乙第二次相遇的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點,連接MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是( )
A.一直增大
B.一直減小
C.先減小后增大
D.先增大后減少
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,經過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A.過點P(1,m)作直線PM⊥x軸于點M,交拋物線于點B.記點B關于拋物線對稱軸的對稱點為C(B、C不重合).連接CB,CP.
(1)當m=3時,求點A的坐標及BC的長;
(2)當m>1時,連接CA,問m為何值時CA⊥CP?
(3)過點P作PE⊥PC且PE=PC,問是否存在m,使得點E落在坐標軸上?若存在,求出所有滿足要求的m的值,并定出相對應的點E坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某品牌轎車的耗油情況,將油箱加滿后進行了耗油試驗,得到如表數據:
轎車行駛的路程s(km) | 0 | 100 | 200 | 300 | 400 | … |
油箱剩余油量Q(L) | 50 | 42 | 34 | 26 | 18 | … |
(1)該轎車油箱的容量為______L,行駛150km時,油箱剩余油量為______L;
(2)根據上表的數據,寫出油箱剩余油量Q(L)與轎車行駛的路程s(km)之間的表達式;
(3)某人將油箱加滿后,駕駛該轎車從A地前往B地,到達B地時郵箱剩余油量為26L,求A,B兩地之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD與AC相交于點E,AB=9,BC=4,DC=3.
(1)求BE的長度;
(2)求△ABE的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com