【題目】已知二次函數(shù)的圖像經(jīng)過點(1,0).

(1)當(dāng),時,求二次函數(shù)的解析式及二次函數(shù)最小值;

(2)二次函數(shù)的圖像經(jīng)過點(,),(,).若對任意實數(shù),函數(shù)值都不小于,求此時二次函數(shù)的解析式.

【答案】(1),最小值為-4;(2

【解析】

1)利用待定系數(shù)法以及配方法進一步求解即可;

2)利用二次函數(shù)的圖像經(jīng)過點(,),(,)即可求出函數(shù)的對稱軸,然后進一步分別用表示出b、c,根據(jù)對任意實數(shù),函數(shù)值都不小于列出不等式,然后進一步即可得出解析式.

1)∵,,

,

∵圖像經(jīng)過點(10),

,

解得:

∴函數(shù)解析式為: ,

配方可得:,

當(dāng)時,函數(shù)取得最小值為-4;

2二次函數(shù)的圖像經(jīng)過點(,),(),

二次函數(shù)對稱軸為:,

,

,

次函數(shù)的圖像經(jīng)過點(1,0),

即:

,

原解析式為:,

頂點縱坐標(biāo)為:,

對任意實數(shù),函數(shù)值都不小于

,且

,

即:,

,

,

,,

∴二次函數(shù)解析式為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2+bx+cx軸交于點A(1,0)、B(3,0),與y軸交于點C(0,﹣3).

(1)求拋物線的解析式;

(2)拋物線上是否存在一點P,使得∠APB=∠ACO成立?若存在,求出點P的坐標(biāo):若不存在,請說明理由.

(3)我們規(guī)定:對于直線l1yk1x+b,直線l2yk2x+b2,若直線k1k2=﹣1,則直線l1l2;反過來也成立.請根據(jù)這個規(guī)定解決下列可題:

如圖2,將該拋物線向上平移過原點與直線ykx(k0)另交于C.T為該二次函數(shù)圖象上位于直線OC下方的動點,過點T作直線TMOC′,重足為點M,且M在線段OC′(不與O、C′重合),過點T作直線TNy軸交OC'于點N.若在點T運動的過程中,為常數(shù),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點為直線上的兩點,過,兩點分別作軸的平行線交雙曲線)于、兩點.,則的值為(

A.12B.7C.6D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,平面上的動點P滿足PCAB,記∠APBα

1)如圖1,當(dāng)點P在直線BC上方時,直接寫出∠PAC的大。ㄓ煤α的代數(shù)式表示);

2)過點BBC的垂線BD,同時作∠PAD60°,射線AD與直線BD交于點D

①如圖2,判斷ADP的形狀,并給出證明;

②連結(jié)CD,若在點P的運動過程中,CDAB.直接寫出此時α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京劇臉譜是京劇藝術(shù)獨特的表現(xiàn)形式.京劇表演中,經(jīng)常用臉譜象征人物的性格,品質(zhì),甚至角色和命運.如紅臉代表忠心耿直,黑臉代表強悍勇猛.現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為紅臉,另外一張卡片的正面圖案為黑臉,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.

請用畫樹狀圖或列表的方法,求抽出的兩張卡片上的圖案都是紅臉的概率.(圖案為紅臉的兩張卡片分別記為A1、A2,圖案為黑臉的卡片記為B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(1)班為了配合學(xué)校體育文化月活動的開展,同學(xué)們從捐助的班費中拿出一部分錢來購買羽毛球拍和跳繩。已知購買一副羽毛球拍比購買一根跳繩多20元。若用200元購買羽毛球拍和用80元購買跳繩,則購買羽毛球拍的副數(shù)是購買跳繩根數(shù)的一半。

1)求購買一副羽毛球拍、一根跳繩各需多少元?

2)雙11期間,商店老板給予優(yōu)惠,購買一副羽毛球拍贈送一根跳繩,如果八(1)班需要的跳繩根數(shù)比羽毛球拍的副數(shù)的倍還多,且該班購買羽毛球拍和跳繩的總費用不超過元,那么八(1)班最多可購買多少副羽毛球拍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平行四邊形ABCD的兩邊ABAD的長是關(guān)于x的方程x2mx+0的兩個實數(shù)根.

1m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=8cm,BC=6cm. P從點A出發(fā),沿AB邊以2 cm/s的速度向點B勻速移動;點Q從點B出發(fā),沿BC邊以1 cm/s的速度向點C勻速移動, 當(dāng)一個運動點到達(dá)終點時,另一個運動點也隨之停止運動,設(shè)運動的時間為t(s).

1)當(dāng)PQAC時,求t的值;

2)當(dāng)t為何值時,△PBQ的面積等于cm 2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家銷售一種商品,銷售一段時間后發(fā)現(xiàn),每天的銷量y(件)與當(dāng)天的銷售單價x(元/件)滿足一次函數(shù)關(guān)系,并且當(dāng)x30時,y500;當(dāng)x35時,y450.物價部門規(guī)定,該商品的銷售單價不能超過48/件,若該商品的定價為30元,實際按定價的8折出售,仍然可以獲得20%的利潤.

1)求該商品的成本價和每天獲得的最大利潤;

2)該公司每天需要人工、水電和房租支出共計b元,若考慮這一因素后公司對最大利潤要控制在8000元至8500元之間(包含80008500),求出b的取值范圍;

3)若該商品的進價改為a元,每天的銷量與當(dāng)天的銷售單價的關(guān)系不變,當(dāng)30≤x≤48時,該商品利潤隨x的增大而增大,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案