【題目】
(1)已知:a=﹣5,b=2時(shí),求代數(shù)式a2﹣3b的值.
(2)當(dāng)a=﹣1,b=﹣3時(shí),求代數(shù)式a2+2ab+b2的值
(3)已知:有理數(shù)m在原點(diǎn)右側(cè)并且和原點(diǎn)距離4個(gè)單位,a,b互為相反數(shù),且都不為零,c,d互為倒數(shù).求:2(a+b)﹣(﹣3cd)﹣m的值.
【答案】(1)19;(2)16;(3)0.
【解析】試題分析:(1)將a、b的值代入代數(shù)式進(jìn)行計(jì)算即可;
(2)利用完全平方公式因式分解,再代入即可;
(3)首先得出m的值,再利用相反數(shù)和倒數(shù)的定義得出a+b和cd的值,代入即可.
解:(1)把a=﹣5,b=2代入得,a2﹣3b=(﹣5)2﹣3×2=25﹣6=19;
(2)∵a=﹣1,b=﹣3,
∴a2+2ab+b2=(a+b)2=(﹣1﹣3)2=16;
(3)∵m在原點(diǎn)右側(cè)并且和原點(diǎn)距離4個(gè)單位,
∴m=4,
∵a,b互為相反數(shù),且都不為零,c,d互為倒數(shù),
∴=﹣1,a+b=0,cd=1,
∴2(a+b)﹣(﹣3cd)﹣m=2×0﹣(﹣1﹣3)﹣4=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問(wèn):此時(shí)直線ON是否平分∠AOC?請(qǐng)說(shuō)明理由.
(2)將圖1中的三角板繞點(diǎn)O以每秒6°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為 (直接寫(xiě)出結(jié)果).
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,求∠AOM﹣∠NOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時(shí)出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1,y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距 千米;
(2)求兩小時(shí)后,貨車離C站的路程y2與行駛時(shí)間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車何時(shí)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)
(2)(﹣7)×(﹣5)﹣90÷(﹣15)
(3)(﹣+)×(﹣36)
(4)2÷(﹣)×÷(﹣)
(5)﹣24+(4﹣9)2﹣5×(﹣1)6
(6)用簡(jiǎn)便方法計(jì)算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)M(﹣2,1)關(guān)于x軸對(duì)稱的點(diǎn)N的坐標(biāo)是__,直線MN與x軸的位置關(guān)系是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小慧兩位同學(xué)在數(shù)學(xué)活動(dòng)課中,把長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙條粘合起來(lái),小明按如圖甲所示的方法粘合起來(lái)得到長(zhǎng)方形ABCD,粘合部分的長(zhǎng)度為6cm,小慧按如圖乙所示的方法粘合起來(lái)得到長(zhǎng)方形A1B1C1D1,黏合部分的長(zhǎng)度為4cm.若長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙條共有100張,則小明應(yīng)分配到 張長(zhǎng)方形白紙條,才能使小明和小慧按各自要求黏合起來(lái)的長(zhǎng)方形面積相等(要求100張長(zhǎng)方形白紙條全部用完).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.從下列四個(gè)條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com