如圖,已知拋物線過A、B、C三點(diǎn),點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),且3AB=4OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求拋物線的關(guān)系式,并求出這個二次函數(shù)的最大值.
分析:(1)先得到OA=1,OB=3,則AB=4,再利用3AB=4OC得到OC=3,可得到C點(diǎn)坐標(biāo)為(0,3);
(2)設(shè)二次函數(shù)的解析式為y=a(x+1)(x-3),把C點(diǎn)坐標(biāo)代入可求出a的值為-1,則二次函數(shù)的解析式為y=-(x+1)(x-3)=-x2+2x+3,然后利用二次函數(shù)的最值問題可確定此二次函數(shù)的最大值為4.
解答:解:(1)∵點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),
∴OA=1,OB=3,
∴AB=4,
∵3AB=4OC,
∴OC=3,
∴C點(diǎn)坐標(biāo)為(0,3);

(2)設(shè)二次函數(shù)的解析式為y=a(x+1)(x-3),
把C(0,3)代入得a×1×(-3)=3,
解得a=-1,
∴二次函數(shù)的解析式為y=-(x+1)(x-3)=-x2+2x+3,
∵a=-1<0,
∴當(dāng)x=-
2
2×(-1)
=1時,y最大值=
4×(-1)×3-22
4×(-1)
=4.
點(diǎn)評:本題考查了待定系數(shù)法求二次函數(shù)的解析式:設(shè)二次函數(shù)的解析式為y=a(x-x1)(x-x2)(其中a≠0,x1,x2為拋物線與x軸兩交點(diǎn)的橫坐標(biāo)),再把函數(shù)圖象上第三個點(diǎn)的坐標(biāo)代入得到關(guān)于a的方程組,解方程求出a的值,從而確定二次函數(shù)的解析式.也考查了二次函數(shù)的最值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線過點(diǎn)A(-1,0)、B(4,0)、C(
11
5
,-
12
5
)

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式及對稱軸;
(2)點(diǎn)C′是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),證明直線y=-
4
3
(x+1)
必經(jīng)過點(diǎn)C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(7,
52
).
(1)求拋物線的解析式;
(2)若D是拋物線的頂點(diǎn),E是拋物線的對稱軸與直線AC的交點(diǎn),F(xiàn)與E關(guān)于D對稱,求證:∠CFE=∠AFE;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有請求出所有符和條件的點(diǎn)P的坐標(biāo);若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線過點(diǎn)A(-1,0)、B(3,0)、C(0,-3).
(1)求該拋物線的解析式及其頂點(diǎn)的坐標(biāo);
(2)若P是拋物線上C、B兩點(diǎn)之間的一動點(diǎn),請連接CP、BP,是否存在點(diǎn)P,使得四邊形OBPC的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線過點(diǎn)A(0,6),B(2,0),C(6,0),直線AB交拋物線的對稱軸于點(diǎn)F,直線AC交拋物線對稱軸于點(diǎn)E.
(1)求拋物線的解析式;
(2)求證:點(diǎn)E與點(diǎn)F關(guān)于頂點(diǎn)D對稱;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有,請求出所有合條件的點(diǎn)P的坐標(biāo);若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案