【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)(x>0)的圖象相交于點(diǎn)B(t,1).
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)點(diǎn)P的坐標(biāo)為(m,m)(m>0),過P作PE∥x軸,交直線AB于點(diǎn)E,作PF∥y軸,交函數(shù)(x>0)的圖象于點(diǎn)F.
①若m=2,比較線段PE,PF的大小;
②直接寫出使PE≤PF的m的取值范圍.
【答案】(1)y=x﹣1;(2)①PE=PF;②0<m≤1或m≥2.
【解析】
(1)把B(t,1)代入反比例函數(shù)解析式即可求得B的坐標(biāo),進(jìn)而把B的坐標(biāo)代入y=ax﹣a根據(jù)待定系數(shù)法即可求得一次函數(shù)的解析式;
(2)①依據(jù)PE∥x軸,交直線AB于點(diǎn)E,PF∥y軸,交函數(shù)(x>0)的圖象于點(diǎn)F,即可得到PE=PF;②當(dāng)m=2,PE=PF;當(dāng)m=1,PE=PF;依據(jù)PE≤PF,即可由圖象得到0<m≤1或m≥2.
(1)∵函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B(t,1),
∴t=2,
∴B(2,1),
代入y=ax﹣a得,1=2a﹣a,
∴a=1,
∴一次函數(shù)的解析式為y=x﹣1;
(2)①當(dāng)m=2時(shí),點(diǎn)P的坐標(biāo)為(2,2),
又∵PE∥x軸,交直線AB于點(diǎn)E,PF∥y軸,交函數(shù)(x>0)的圖象于點(diǎn)F,
∴當(dāng)y=2時(shí),2=x﹣1,即x=3,
∴PE=3﹣2=1,
當(dāng)x=2時(shí),=1,
∴PF=2﹣1=1,
∴PE=PF;
②由①可得,當(dāng)m=2,PE=PF;
∵PE=m+1﹣m=1,
令﹣m=1,則m=1或m=﹣2(舍去),
∴當(dāng)m=1,PE=PF;
∵PE≤PF,
∴由圖象可得,0<m≤1或m≥2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=3;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G、F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDGF周長的最小值為,其中,判斷正確的序號是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,軸,,拋物線的頂點(diǎn)為,與軸交點(diǎn)為.
(1)設(shè)為中點(diǎn),直接寫出直線的函數(shù)表達(dá)式:______________.
(2)求點(diǎn)最高時(shí)的坐標(biāo);
(3)拋物線有可能經(jīng)過點(diǎn)嗎?請說明理由;
(4)在的位置隨的值變化而變化的過程中,求點(diǎn)在內(nèi)部所經(jīng)過路線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】評價(jià)組對某區(qū)九年級教師的試卷講評課的學(xué)生參與度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價(jià)組隨機(jī)抽取了若干名同學(xué)的參與情況,繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價(jià)中,一共抽查了 名同學(xué);
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果全區(qū)有6000名九年級學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的約有多少人?
(4)根據(jù)統(tǒng)計(jì)反映的情況,請你對該區(qū)的九年級同學(xué)提出一條對待試卷講評課的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,動(dòng)點(diǎn)M、N同時(shí)從A點(diǎn)出發(fā),點(diǎn)M沿AB以每秒1個(gè)單位長度的速度向中點(diǎn)B運(yùn)動(dòng),點(diǎn)N沿折現(xiàn)ADC以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,則△CMN的面積為S關(guān)于t函數(shù)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)E;B、E是半圓弧的三等分點(diǎn),的長為,則圖中陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,過D點(diǎn)作DF⊥AB于點(diǎn)F,
①則cos∠EDF= ;
②求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月21日,長春市遭遇了一次大量降雪天氣,市環(huán)保系統(tǒng)出動(dòng)了多輛清雪車連夜清雪,已知一臺大型清雪車比一臺小型清雪車每小時(shí)多清掃路面6千米,一臺大型清雪車清掃路面90千米與一臺小型清雪車清掃路面60千米所用的時(shí)間相同.求一臺小型清雪車每小時(shí)清掃路面的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com