【題目】如圖,O為直線AB上一點(diǎn),F為射線OC上一點(diǎn),OE⊥AB.
(1)用量角器和直角三角尺畫∠AOC的平分線OD,畫FG⊥OC,FG交AB于點(diǎn)G;
(2)在(1)的條件下,比較OF與OG的大小,并說明理由;
(3)在(1)的條件下,若∠BOC=40°,求∠AOD與∠DOE的度數(shù).
【答案】(1)見解析;(2)OF<OG;理由見解析;(3)∠AOD=70°,∠DOE=20°.
【解析】
(1)使用量角器量出的度數(shù),再用直角三角尺畫它的平分線,使用直角三角尺畫于G;
(2)根據(jù)垂線段最短即可確定OF和OG的大小;
(3)先利用鄰補(bǔ)角計(jì)算出,再根據(jù)角平分線定義得,然后利用角互余計(jì)算的度數(shù).
(1)先使用量角器量出的度數(shù),再用直角三角尺畫它的平分線;使用直角三角尺畫于G,如下圖所示,OD、FG即為所畫
(2).理由如下:
是點(diǎn)O到FG的距離
由直線外一點(diǎn)與直線上各點(diǎn)的連線中,垂線段最短可知,;
(3)
∵OD是的平分線
∴
∵
∴
∴
故的度數(shù)為,的度數(shù)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,上午9時(shí),一條漁船從A出發(fā),以12海里/時(shí)的速度向正北航行,11時(shí)到達(dá)B處,從A、B處望小島C,測得∠NAC=15°,∠NBC=30°.若小島周圍12.3海里內(nèi)有暗礁,問該漁船繼續(xù)向正北航行有無觸礁危險(xiǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于三個(gè)數(shù)、、,用表示這三個(gè)數(shù)的中位數(shù),用表示這三個(gè)數(shù)中最大數(shù),例如:,,.
解決問題:
(1)填空: ,如果,則的取值范圍為 ;
(2)如果,求的值;
(3)如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結(jié)果_________.
(3)請你模仿以上方法嘗試對多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知△ABC為直角三角形,∠A=90°,若沿圖中虛線剪去∠A,則∠1+∠2等于( )
A.90° B.135° C.270° D.315°
(2)如圖②,已知△ABC中,∠A=40°,剪去∠A后成四邊形,則∠1+∠2=________°;
(3)根據(jù)(1)與(2)的求解過程,請你歸納猜想∠1+∠2與∠A的關(guān)系是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=90°,射線OC繞點(diǎn)O從OA位置開始,以每秒4°的速度順時(shí)針方向旋轉(zhuǎn);同時(shí),射線OD繞點(diǎn)O從OB位置開始,以每秒1°的速度逆時(shí)針方向旋轉(zhuǎn).當(dāng)OC與OA成180°時(shí),OC與OD同時(shí)停止旋轉(zhuǎn).
(1)當(dāng)OC旋轉(zhuǎn)10秒時(shí),∠COD= °.
(2)當(dāng)旋轉(zhuǎn)時(shí)間為 秒時(shí),OC與OD的夾角是30°.
(3)當(dāng)旋轉(zhuǎn)時(shí)間為 秒時(shí),OB平分∠COD時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣3與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),交y軸于點(diǎn)C,過點(diǎn)C作CD∥x軸,交拋物線于點(diǎn)D.
(1)求拋物線的解析式;
(2)若直線y=m(﹣3<m<0)與線段AD、BD分別交于G、H兩點(diǎn),過G點(diǎn)作EG⊥x軸于點(diǎn)E,過點(diǎn)H作HF⊥x軸于點(diǎn)F,求矩形GEFH的最大面積;
(3)若直線y=kx+1將四邊形ABCD分成左、右兩個(gè)部分,面積分別為S1,S2,且S1:S2=4:5,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC、△FGH中,D、E兩點(diǎn)分別在AB、AC上,F點(diǎn)在DE上,G、H兩點(diǎn)在BC上,且DE∥BC,F(xiàn)G∥AB,F(xiàn)H∥AC,若BG:GH:HC=4:6:5,則△ADE與△FGH的面積比為何?( 。
A. 2:1 B. 3:2 C. 5:2 D. 9:4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com