已知:在△ABC中,AB=13,AC=15,AD為BC邊的高,且AD=12,求△ABC的面積.
分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD,CD,再由圖形求出BC,在銳角三角形中,BC=BD+CD,在鈍角三角形中,BC=CD-BD,分別計(jì)算出CD的長,再利用三角形的面積公式計(jì)算出面積.
解答:解:(1)如圖,銳角△ABC中,AB=13,AC=15,BC邊上高AD=12,
在Rt△ABD中AB=13,AD=12,由勾股定理得
BD2=AB2-AD2=132-122=25,
∴BD=5,
在Rt△ABD中AC=15,AD=12,由勾股定理得
CD2=AC2-AD2=152-122=81,
∴CD=9,
∴BC的長為BD+DC=9+5=14,
△ABC的面積:
1
2
×BC×AD=
1
2
×14×12=84;

(2)鈍角△ABC中,AB=13,AC=15,BC邊上高AD=12,
在Rt△ABD中AB=13,AD=12,由勾股定理得
BD2=AB2-AD2=132-122=25,
∴BD=5,
在Rt△ACD中AC=15,AD=12,由勾股定理得
CD2=AC2-AD2=152-122=81,
∴CD=9,
∴BC=DC-BD=9-5=4.
△ABC的面積:
1
2
×BC×AD=
1
2
×4×12=24.
點(diǎn)評(píng):本題考查了勾股定理,以及三角形的面積計(jì)算,把三角形斜邊轉(zhuǎn)化到直角三角形中用勾股定理解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:在△ABC中AB=AC,點(diǎn)D在CB的延長線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)化簡:(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長為7,BC=y,AB=x(2≤x≤3).寫出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)M,ME∥AB交BC于點(diǎn)E,MF∥AC交BC于點(diǎn)F.求證:△MEF的周長等于BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長x的取值范圍是
x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點(diǎn)E.∠B=38°,∠C=70°.
①求∠DAE的度數(shù);
②試寫出∠DAE與∠B、∠C之間的一般等量關(guān)系式(只寫結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案