【題目】如圖,OABC中頂點(diǎn)Ax軸負(fù)半軸上,B、C在第二象限,對角線交于點(diǎn)D,若C、D兩點(diǎn)在反比例函數(shù)的圖象上,且OABC的面積等于12,則k的值是____

【答案】﹣4

【解析】

過點(diǎn)DDF⊥OA于點(diǎn)F,過點(diǎn)CCE⊥OA于點(diǎn)E,OABC的面積等于12,可得△AOC的面積為6,又因點(diǎn)D是線段AC的中點(diǎn),CEDF,可得DFACE的中位線,由三角形的中位線定理可得CE=2DF,AF=EF,根據(jù)反比例函數(shù)系數(shù)k的幾何意義可得SOCE=SODF= 即可求得OF=2OE,SADF= ,SACE=|k|,根據(jù)SACE+SOCE=SAOC=6可求得k,根據(jù)反比例函數(shù)在第二象限對k的值進(jìn)行取舍即可

解:如圖所示:過點(diǎn)DDF⊥OA于點(diǎn)F,過點(diǎn)CCE⊥OA于點(diǎn)E,

∵OABC的面積等于12,

∴△AOC的面積為6,

點(diǎn)D是線段AC的中點(diǎn),CE∥DF,

∴DF△ACE的中位線,

∴CE=2DF,AF=EF,

∵S△OCE=S△ODF=

∴OF=2OE,S△ADF= ,S△ACE=|k|,

∴S△ACE+S△OCE=S△AOC=6,即 =6,

∵k<0(反比例函數(shù)在第二象限),

∴k=﹣4.

故答案為:﹣4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長為1的正方形OA1B1C的對角線A1C和OB1交于點(diǎn)M1;以M1A1為對角線作第二個(gè)正方形A2A1B2M,對角線A1M1和A2B2交于點(diǎn)M2;以M2A1為對角線作第三個(gè)正方形A3A1B3M2,對角線A1M2和A3B3交于點(diǎn)M3;…,依此類推,這樣作的第6個(gè)正方形對角線交點(diǎn)的橫坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角BAD=,坡長AB=,為加強(qiáng)水壩強(qiáng)度將壩底從A處向后水平延伸到F,使新的背水坡的坡角F=45,AF的長度結(jié)果精確到1,參考數(shù)據(jù) ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測到我漁船C在東北方向上的我國某傳統(tǒng)漁場.若漁政310船航向不變,航行半小時(shí)后到達(dá)B處,此時(shí)觀測到我漁船C在北偏東30°方向上.問漁政310船再航行多久,離我漁船C的距離最近?(假設(shè)我漁船C捕魚時(shí)移動距離忽略不計(jì),結(jié)果不取近似值.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,電線桿CD上的C處引拉線CE,CF固定電線桿,在離電線桿6米的B處安置測角儀(點(diǎn)B,E,D在同一直線上),在A處測得電線桿上C處的仰角為30°,已知測角儀的高AB=1.5米,BE=2.3米,求拉線CE的長,(精確到0.1米)參考數(shù)據(jù)1.41,1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,點(diǎn)E是菱形ABCD內(nèi)一點(diǎn),連結(jié)CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BEDF,若∠E=86°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某九年級制學(xué)校圍繞每天30分鐘的大課間,你最喜歡的體育活動項(xiàng)目是什么?(只寫一項(xiàng))的問題,對在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖回答下列問題:

(1)該校對多少學(xué)生進(jìn)行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級共有200名學(xué)生,圖2是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請你估計(jì)全校學(xué)生中最喜歡跳繩活動的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A、C,點(diǎn)D⊙O上一點(diǎn),連結(jié)AD、OD、BD,∠BAD=∠B=30°.

(1)求證:BD⊙O的切線.

(2)OA=8,求OA、OD圍成的扇形的面積.

查看答案和解析>>

同步練習(xí)冊答案