推理證明:如圖1,在正方形ABCD和正方形CGFE中,連結(jié)DE、BG,設(shè)△DCE的面積為S1,△BCG的面積為S2,求證:S1=S2
猜想論證:如圖2,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)后得到矩形FECG,連結(jié)DE、BG,設(shè)△DCE的面積為S1,△BCG的面積為S2,猜想S1、S2的數(shù)量關(guān)系,并加以證明.
拓展探究:如圖3,在△ABC中,AB=AC=10cm,∠B=30°,把△ABC沿AC翻折到△ACE,過點A作AD∥CE交BC于點D,在線段CE上存在點P,使△ABP的面積等于△ACD的面積,請你直接寫出CP的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下圖表示甲、乙兩名選手在一次自行車越野賽中,各時間段的平均速度v(千米/小時)隨時間t(分)變化的圖象(全程),根據(jù)圖象提供的信息:
(1)求這次比賽全程是多少千米;
(2)求比賽開始后多少分鐘兩人相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一個多邊形的每一個外角都等于72°,則這個多邊形的邊數(shù)是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)活動-求重疊部分的面積

(1)問題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積為
 

(2)探究1:在(1)的條件下,將紙片繞P點旋轉(zhuǎn)至如圖②所示位置,紙片兩邊分別與AC,AB交于點E,F(xiàn),圖②中重疊部分的面積與圖①重疊部分的面積是否相等?如果相等,請給予證明;如果不相等,請說明理由.
(3)探究2:如圖③,若∠CAB=α(0°<α<90°),AD為∠CAB的角平分線,點P在射線AD上,且AP=2,以P為頂點的等腰三角形紙片(紙片足夠大)與∠CAB的兩邊AC,AB分別交于點E、F,∠EPF=180°-α,求重疊部分的面積.(用α或
α2
的三角函數(shù)值表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將一副直角三角板按圖1的方式放置,三角板ACB的直角頂點A在三角板EDF的直角邊DE上,點C、D、B、F在同一直線上,點D、B是CF的三等分點,CF=6.
(1)三角板ACB固定不動,將三角板EDF繞點D逆時針旋轉(zhuǎn),使DE與AC交于點M,DF與AB交于點N,當EF∥CB時(如圖2),DF旋轉(zhuǎn)的度數(shù)為
 

(2)求圖2中的四邊形AMDN的周長;
(3)將圖2中的三角板EDF繞點D繼續(xù)逆時針旋轉(zhuǎn)15°得圖3,猜想圖3中的四邊形AMDN是什么四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,等腰直角△ABC中,AB=AC,∠BAC=90°,將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)操作發(fā)現(xiàn):在線段BC上取一點M,連接AM,若AD平分∠BAM,則∠MAE與∠EAC的數(shù)量關(guān)系是
 

(2)猜想論證:當0°<α<45°時,線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2.小穎和小亮想出了兩種不同的方法進行解決:
小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2);
小亮的想法:將△ABD繞點A順時針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
請你從中任選一種方法進行證明;
(3)拓展探究:繼續(xù)旋轉(zhuǎn)三角板,當135°<α<180°時(如圖4),試探究線段BD、CE、DE之間的關(guān)系,請直接寫出寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

兩個全等的直角三角板ABC和DEF重疊在一起,∠BAC=∠EDF=30°,AC=DF=2.△ABC固定不動,將△DEF沿AC平移(點D在線段AC上移動).
(1)猜想與證明:如圖①,當點D為AC的中點時,請你猜想四邊形BDCE的性狀,并證明結(jié)論;
(2)思考與驗證:如圖②,連接BD,BE,CE,四邊形BDCE的形狀在不斷的變化,它的面積變化嗎?若不變,求出其面積;若變化,請說明理由;
(3)操作與計算:如圖③,當點D為AC的中點時,將點D固定,然后再將△DEF繞點D順時針旋轉(zhuǎn)60°,若點P為線段AC延長線上一動點,求PE+PF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

菱形具有而矩形不具有的性質(zhì)是( 。
A、對角線互相平分B、對角相等C、對角線互相垂直D、對邊平行且相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、CD為圓形紙片中兩條互相垂直的直徑,將圓形紙片沿EF折疊,使B與圓心M重合,折痕EF與AB相交于N,連結(jié)AE、AF,得到了以下結(jié)論:
①四邊形MEBF是菱形;
②△AEF為等邊三角形;
③AE是
EMF
所在圓的切線;
④S△AEF:S=3
3
:4π.
其中正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案