【題目】先化簡,再求值:,其中|x|≤1,且x為整數(shù).
小海同學(xué)的解法如下:
解:原式=﹣ ①
=(x﹣1)2﹣x2+3 ②
=x2﹣2x﹣1﹣x2+3 ③
=﹣2x+2.④
當(dāng)x=﹣1時,⑤
原式=﹣2×(﹣1)+2⑥
=2+2=4.⑦
請指出他解答過程中的錯誤(寫出相應(yīng)的序號,多寫不給分),并寫出正確的解答過程.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O.AB為⊙O的直徑,BC=3,AB=5,D、E分別是邊AB、BC上的兩個動點(不與端點A、B、C重合),將△BDE沿DE折疊,點B的對應(yīng)點B′恰好落在線段AC上(包含端點A、C),若△ADB′為等腰三角形,則AD的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年9月23日強臺風(fēng)“天兔”登錄深圳,伴隨著就是狂風(fēng)暴雨。梧桐山山坡上有一棵與水平面垂直的大樹,臺風(fēng)過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示)。已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°, AD=3m。
(1)求∠DAC的度數(shù);
(2)求這棵大樹折斷前的高度。(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,用尺規(guī)作圖的方法作出射線AD和直線EF,設(shè)AD交EF于點O,連結(jié)BE、OC.下列結(jié)論中,不一定成立的是( 。
A.AE⊥BEB.EF平分∠AEBC.OA=OCD.AB=BE+EC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺攝制組乘船往返于A碼頭和B碼頭進行拍攝,在A、B兩碼頭間設(shè)置拍攝中心C.在往返過程中,假設(shè)船在A、B、C處均不停留,船離開B碼頭的距離s(千米)與航行的時間t(小時)之間的函數(shù)關(guān)系式如圖所示.根據(jù)圖象信息,解答下列問題:
(1)求船從B碼頭返回A碼頭時的速度及返回時s關(guān)于t的函數(shù)表達式.
(2)求水流的速度.
(3)若拍攝中心C設(shè)在離A碼頭12千米處,攝制組在拍攝中心分兩組拍攝,其中一組乘橡皮艇漂流到B碼頭處,另一組同時乘船到達A碼頭后馬上返回,求兩攝制組相遇時離拍攝中心C的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BD,∠BAD=50°,∠C=30°.
(1)求∠BAC的度數(shù);
(2)取AD的中點E,連接BE并延長交AC于點F.求證:AB=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
圖1,等腰△ABC中,AB=AC,∠BAC=120°,過點A作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°;于是==;
(1)遷移應(yīng)用:
如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.求證:CD=AD+BD;
(2)拓展延伸
如圖圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.若AE=5,CE=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點為A(-3,-3),此拋物線交x軸于O、 B兩點.
(1)求此拋物線的解析式.
(2)求△AOB的面積 .
(3)若拋物線上另有點P滿足S△POB=S△AOB,請求出P坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com