【題目】小紅和小明在研究一個(gè)數(shù)學(xué)問(wèn)題:已知ABCD,ABCD都不經(jīng)過(guò)點(diǎn)E,探索∠E與∠A,∠C的數(shù)量關(guān)系.

(一)發(fā)現(xiàn):在如圖1中,小紅和小明都發(fā)現(xiàn):∠AEC=A+C

小紅是這樣證明的:如圖7過(guò)點(diǎn)EEQAB

∴∠AEQ=A  

EQAB,ABCD

EQCD  

∴∠CEQ=C

∴∠AEQ+CEQ=A+C 即∠AEC=A+C

小明是這樣證明的:如圖7過(guò)點(diǎn)EEQABCD

∴∠AEQ=A,∠CEQ=C

∴∠AEQ+CEQ=A+C即∠AEC=A+C

請(qǐng)?jiān)谏厦孀C明過(guò)程的橫線上,填寫(xiě)依據(jù):兩人的證明過(guò)程中,完全正確的是  

(二)嘗試:

1)在如圖2中,若∠A=110°,∠C=130°,則∠E的度數(shù)為  ;

2)在如圖3中,若∠A=20°,∠C=50°,則∠E的度數(shù)為  

(三)探索:

裝置如圖4中,探索∠E與∠A,∠C的數(shù)量關(guān)系,并說(shuō)明理由.

(四)猜想:

1)如圖5,∠B、∠D、∠E、∠F、∠G之間有什么關(guān)系?(直接寫(xiě)出結(jié)論)

2)如圖6,你可以得到什么結(jié)論?(直接寫(xiě)出結(jié)論)

【答案】(一) ( 兩直線平行,內(nèi)錯(cuò)角相等)(平行于同一條直線的兩直線平行),小明的證法;(二)120°,30°;(三)見(jiàn)解析;(四) (1)∠E+∠G=∠B+∠F+∠D;(2)見(jiàn)解析.

【解析】

(一)小紅、小明的做法,都是做了平行線,利用平行線的性質(zhì);(二)的(1)、(四)都可仿照(一),通過(guò)添加平行線把分散的角集中起來(lái).

(一)( 兩直線平行,內(nèi)錯(cuò)角相等),(平行于同一條直線的兩直線平行);

完全正確的是:小明的證法;

(二)嘗試:

1)(1)過(guò)點(diǎn)EEFAB

ABCD,

EFCD.∵EFAB

∴∠A+AEF=180°,

∵∠A=110°,∴∠AEF=70°.

EFCD

∴∠C+CEF=180°,

∵∠C=130°,∴∠CEF=50°.

∴∠AEC=AEF+CEF=70°+50°=120°.

2)如圖,

ABCD,

∴∠EOB=C=50°,

∵∠EOB=A+E,

∵∠E=EOB-A=50°-20°=30°.

答案:120°,30°.

(三)∠E=EABC.

理由:延長(zhǎng)EA,交CD于點(diǎn)F.

∵AB∥CD

∴∠EFD=∠EAB.

∵∠EFD=∠C+∠E,

∴∠EAB=∠C+∠E,

∴∠E=∠EAB∠C.

(四)(1)可通過(guò)過(guò)點(diǎn)E、FG分別做AB的平行線,得到結(jié)論:∠E+∠G=∠B+∠F+∠D.

(2)同上道理一樣,可得到結(jié)論:∠E1+∠E2+…+∠En=∠F1+∠F2+…∠Fn+∠B+∠D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雅安地震發(fā)生后,全國(guó)人民抗震救災(zāi),眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車(chē)型供選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車(chē)均滿載)

車(chē)型

汽車(chē)運(yùn)載量(噸/輛)

5

8

10

汽車(chē)運(yùn)費(fèi)(元/輛)

400

500

600

(1)全部物資可用甲型車(chē)8輛,乙型車(chē)5輛,丙型車(chē) 來(lái)運(yùn)送.

(2)若全部物資都用甲、乙兩種車(chē)型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車(chē)型各幾輛?

(3)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車(chē)型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車(chē)型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“一帶一路”讓中國(guó)和世界更緊密,“中歐鐵路”為了安全起見(jiàn)在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開(kāi)始順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開(kāi)始順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是每秒2度,燈B轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開(kāi)始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過(guò)C作ACD交PQ于點(diǎn)D,且ACD=120°,則在轉(zhuǎn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄?/span>BAC與BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P在第一象限角平分線上,點(diǎn)Ax軸的正半軸運(yùn)動(dòng),點(diǎn)By軸上,且

如圖1,點(diǎn)By軸的正半軸上,,則______;

如圖2,點(diǎn)B與原點(diǎn)重合,,點(diǎn)QOP延長(zhǎng)線上一點(diǎn),連接QA,過(guò)點(diǎn)P軸,與QA相交于點(diǎn)G,過(guò)點(diǎn)Px軸的垂線,垂足是點(diǎn)H,過(guò)點(diǎn)AQA的垂線與PH相交于點(diǎn)E,過(guò)點(diǎn)E,與x軸相交于點(diǎn)F,若,求點(diǎn)E的坐標(biāo);

如圖3,點(diǎn)By軸的負(fù)半軸上,PBx軸相交于點(diǎn)D,連接ABAO平分,過(guò)點(diǎn)P軸于點(diǎn)M,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公交公司為應(yīng)對(duì)春運(yùn)期間的人流高峰,計(jì)劃購(gòu)買(mǎi)A、B兩種型號(hào)的公交車(chē)共10輛,若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)3輛,共需650萬(wàn)元,

(1)試問(wèn)該公交公司計(jì)劃購(gòu)買(mǎi)A型和B型公交車(chē)每輛各需多少萬(wàn)元?

(2)若該公司預(yù)計(jì)在某條線路上A型和B型公交車(chē)每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用W不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在某條線路的年均載客量總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?哪種購(gòu)車(chē)方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(a,0),B(b,0),其中a,b滿足|a+1|+(b﹣3)2=0.

1)填空:a=  ,b=  ;

2)如果在第三象限內(nèi)有一點(diǎn)M﹣2,m),請(qǐng)用含m的式子表示ABM的面積;

3)在(2)條件下,當(dāng)m=時(shí),在y軸上有一點(diǎn)P,使得BMP的面積與ABM的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的平分線BD的平分線CD相交于D

(1)ABCD平行嗎?請(qǐng)說(shuō)明理由;

(2)如果,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來(lái),一種新型打車(chē)方式受到大眾歡迎,該打車(chē)方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車(chē)方式出行,按上述計(jì)價(jià)規(guī)則,其打車(chē)總費(fèi)用、行駛里程數(shù)與打車(chē)時(shí)間如表:(1)求x,y的值;(2)如果小華也用該打車(chē)方式,打車(chē)行駛了11公里,用了14分鐘,那么小華的打車(chē)總費(fèi)用為多少?

時(shí)間(分鐘)

里程數(shù)(公里)

車(chē)費(fèi)(元)

小明

8

8

12

小剛

12

10

16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過(guò)點(diǎn)(﹣1,0)和(m,0),且1<m<2,當(dāng)x<﹣1時(shí),y隨著x的增大而減。铝薪Y(jié)論:
①abc>0;
②a+b>0;
③若點(diǎn)A(﹣3,y1),點(diǎn)B(3,y2)都在拋物線上,則y1<y2;
④a(m﹣1)+b=0;
⑤若c≤﹣1,則b2﹣4ac≤4a.
其中結(jié)論錯(cuò)誤的是 . (只填寫(xiě)序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案