【題目】如圖二次函數(shù) 的圖象經(jīng)過A(-1,0)和B(3,0)兩點,且交 軸于點C.
(1)試確定 、 的值;
(2)若點M為此拋物線的頂點,求△MBC的面積.
【答案】
(1)解:把(-1,0)、(3,0)代入y=x2+bx+c中,得
,
解得 ,
故b=-2,c=-3;
(2)解: 過M作MD垂直于y軸,垂足為D.求出拋物線的頂點 ;
△MBC的面積=梯形MDOB-△OBC-△CMD
=
=3.
【解析】(1)將點A、B兩點坐標代入函數(shù)解析式,建立關于b、c的方程組,解方程組即可求出b、c的值。
(2)過點過M作MD垂直于y軸,垂足為D.由△MBC的面積=梯形MDOB-△OBC-△CMD;或過點M作x軸的垂線交BC于點N,根據(jù)△MBC的面積=△CNM的面積+△MBN的面積。
【考點精析】關于本題考查的解二元一次方程組和三角形的面積,需要了解二元一次方程組:①代入消元法;②加減消元法;三角形的面積=1/2×底×高才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O與直線 相離,圓心 到直線 的距離 , ,將直線 繞點 逆時針旋轉(zhuǎn) 后得到的直線 剛好與⊙O相切于點 ,則⊙O的半徑= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2.證明:∠DGA+∠BAC=180°.請完成說明過程.
解:∵EF∥AD,(已知)
∴∠2=∠3.( )
又∵∠1=∠2(已知)
∴∠1=∠3,(等量代換)
∴AB∥ ,( )
∴∠DGA+∠BAC=180°.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀其中的奧秘.
你知道怎樣迅速準確的計算出結(jié)果嗎?請你按下面的問題試一試:
①,又,
,∴能確定59319的立方根是個兩位數(shù).
②∵59319的個位數(shù)是9,又,∴能確定59319的立方根的個位數(shù)是9.
③如果劃去59319后面的三位319得到數(shù)59,
而,則,可得,
由此能確定59319的立方根的十位數(shù)是3
因此59319的立方根是39.
(1)現(xiàn)在換一個數(shù)195112,按這種方法求立方根,請完成下列填空.
①它的立方根是_______位數(shù).
②它的立方根的個位數(shù)是_______.
③它的立方根的十位數(shù)是__________.
④195112的立方根是________.
(2)請直接填寫結(jié)果:
①________.
②________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李紅在學校的研究性學習小組中負責了解初一年級200名女生擲實心球的測試成績.她從中隨機調(diào)查了若干名女生的測試成績(單位:米),并將統(tǒng)計結(jié)果繪制成了如下的統(tǒng)計圖表(內(nèi)容不完整).
測試成績 | 合計 | |||||
頻數(shù) | 3 | 27 | 9 | m | 1 | n |
請你結(jié)合圖表中所提供的信息,回答下列問題:
(1)表中m= , n=;
(2)請補全頻數(shù)分布直方圖;
(3)在扇形統(tǒng)計圖中, 這一組所占圓心角的度數(shù)為度;
(4)如果擲實心球的成績達到6米或6米以上為優(yōu)秀,請你估計該校初一年級女生擲實心球的成績達到優(yōu)秀的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD.
(1)如圖1,若∠A=35°,∠C=48°則∠E= °.
(2)如圖2,若∠E=120°,∠C=110°,求∠A+∠F的度數(shù);
(3)如圖3,若∠E=110°,,若GD∥FC,請直接寫出∠AGF與∠GDC的數(shù)量關系: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=2,AC=4.對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)α°,分別交直線BC、AD于點E、F.
(1)當α= °,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個點為頂點構造四邊形.
①α= °,構造的四邊形是菱形;
②若構造的四邊形是矩形,求出該矩形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com