12.如圖,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,點(diǎn)P由C點(diǎn)出發(fā)以2m/s的速度向終點(diǎn)A勻速移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā)以1m/s的速度向終點(diǎn)C勻速移動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也隨之停止移動(dòng).
(1)經(jīng)過(guò)幾秒△PCQ的面積為△ACB的面積的$\frac{1}{3}$?
(2)經(jīng)過(guò)幾秒,△PCQ與△ACB相似?

分析 (1)分別表示出線段PC和線段CQ的長(zhǎng)后利用S△PCQ=$\frac{1}{3}$S△ABC列出方程求解;
(2)設(shè)運(yùn)動(dòng)時(shí)間為ts,△PCQ與△ACB相似,當(dāng)△PCQ與△ACB相似時(shí),可知∠CPQ=∠A或∠CPQ=∠B,則有$\frac{CP}{CA}$=$\frac{CQ}{CB}$或$\frac{CP}{CB}$=$\frac{CQ}{CA}$,分別代入可得到關(guān)于t的方程,可求得t的值;

解答 解:(1)設(shè)經(jīng)過(guò)x秒△PCQ的面積為△ACB的面積的$\frac{1}{3}$,
由題意得:PC=2xm,CQ=(6-x)m,
則$\frac{1}{2}$×2x(6-x)=$\frac{1}{3}$×$\frac{1}{2}$×8×6,
解得:x=2或x=4.
則經(jīng)過(guò)2秒或4秒,△PCQ的面積為△ACB的面積的$\frac{1}{3}$;

(2)設(shè)運(yùn)動(dòng)時(shí)間為ts,△PCQ與△ACB相似.
當(dāng)△PCQ與△ACB相似時(shí),則有$\frac{CP}{CA}$=$\frac{CQ}{CB}$或$\frac{CP}{CB}$=$\frac{CQ}{CA}$,
所以$\frac{2t}{8}$=$\frac{6-t}{6}$,或$\frac{2t}{6}$=$\frac{6-t}{8}$,
解得t=$\frac{12}{5}$,或t=$\frac{18}{11}$.
因此,經(jīng)過(guò)$\frac{12}{5}$秒或$\frac{18}{11}$秒,△OCQ與△ACB相似;

點(diǎn)評(píng) 本題考查了一元二次方程的應(yīng)用,用到的知識(shí)點(diǎn)是相似三角形的判定與性質(zhì),三角形的面積,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知銳角△ABC內(nèi)接于⊙O,點(diǎn)D在$\widehat{BC}$上(點(diǎn)D與點(diǎn)A位于弦BC的兩側(cè)),∠ADC=∠ACB.
(1)如圖1,求證:AB=AC;
(2)如圖2,點(diǎn)P在$\widehat{AC}$上(與點(diǎn)B位于弦AC的兩側(cè)),連接BP,交弦AD于點(diǎn)E,交弦AC于點(diǎn)F,若AE=AF,求證:∠BCD=2∠PBC;
(3)如圖3,在(2)的條件下,延長(zhǎng)BP,交DC的延長(zhǎng)線于點(diǎn)G,連接BD,若∠PBD=45°,BC=3,PG=$\sqrt{5}$,求線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在下列交通標(biāo)志中,既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,△ABC經(jīng)過(guò)平移得到△A1B1C1,B1C=6cm,BC=3.5cm,則BC1=1cm;若∠B1=90°,∠A=60°,則∠A1C1B1=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,AB是⊙O的直徑,C,E,F(xiàn)為⊙O上的點(diǎn),CA是∠BAF的平分線,過(guò)點(diǎn)C作CD⊥AF交AF的延長(zhǎng)線于D點(diǎn),CE⊥AB,垂足為點(diǎn)G.
(1)求證:DC是⊙O的切線;
(2)若sin∠BAC=$\frac{2}{5}$,求$\frac{{S}_{△CBE}}{{S}_{△ABC}}$的值(S表示面積).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,△ABC是Rt△,∠ABC=90°,以AB為直徑的⊙O交AC于D,⊙O的半徑為5,$tanA=\frac{3}{4}$.
(1)利用尺規(guī)作圖,過(guò)點(diǎn)D作⊙O的切線DE,交BC于點(diǎn)E,保留作圖痕跡;
(2)求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知l1∥l2,點(diǎn)A,B在l1上,點(diǎn)C,D在l2上,連接AD,BC.AE,CE分別是∠BAD,∠BCD的角平分線,∠α=70°,∠β=30°.
(1)如圖①,求∠AEC的度數(shù);
(2)如圖②,將線段AD沿CD方向平移,其他條件不變,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在如圖所示的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)試作出直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(2,-1);
(2)在(1)中建立的直角坐標(biāo)系中描出點(diǎn)B (3,4),C (0,1),并求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A是函數(shù)y=$\frac{4}{x}$(x<0)圖象上一點(diǎn),AO的延長(zhǎng)線交函數(shù)y=$\frac{k^2}{x}$(x>0,k<0)的圖象于點(diǎn)B,BC⊥x軸,若S△ABC=$\frac{15}{2}$,則k的值是-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案