【題目】如圖,在矩形中,,為矩形的中心,以為圓心1為半徑作,上的一個(gè)動(dòng)點(diǎn),連接,,則面積的最大值為_______

【答案】

【解析】

當(dāng)P點(diǎn)移動(dòng)到過(guò)點(diǎn)P的直線平行于OA且與⊙D相切時(shí),△AOP面積的最大,由于P為切點(diǎn),得出MP垂直于切線,進(jìn)而得出PMAC,根據(jù)勾股定理先求得AC的長(zhǎng),進(jìn)而求得OA的長(zhǎng),根據(jù)△ADM∽△ACD,求得DM的長(zhǎng),從而求得PM的長(zhǎng),最后根據(jù)三角形的面積公式即可求得.

解:當(dāng)P點(diǎn)移動(dòng)到過(guò)點(diǎn)P的直線平行于OA且與⊙D相切時(shí),AOP面積的最大,如圖,

∵過(guò)P的直線是⊙D的切線,

DP垂直于切線,

延長(zhǎng)PDACM,則DMAC,

∵在矩形ABCD中,AB=3,BC=4,

AC=

OA=

∵∠AMD=ADC=90°,∠DAM=CAD

∴△ADM∽△ACD,

AD=4,CD=3,AC=5,

DM=,

PM=PD+DM=1+=

∴△AOP的最大面積=OAPM=××=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,當(dāng)點(diǎn)、、三點(diǎn)共線時(shí),旋轉(zhuǎn)角為,連接,交于點(diǎn),下面結(jié)論:①為等腰三角形;②;③;④;⑤中,正確結(jié)論的個(gè)數(shù)是(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題發(fā)現(xiàn)

如圖1均為等邊三角形,直線和直線交于點(diǎn)

填空:①的度數(shù)是

②線段,之間的數(shù)量關(guān)系為

2)類比探究

如圖2,均為等腰直角三角形,,,直線和直線交于點(diǎn).請(qǐng)判斷的度數(shù)及線段,之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)解決問(wèn)題

如圖3,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)軸上任意一點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連接,請(qǐng)直接寫(xiě)出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),點(diǎn)E時(shí)的中點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BD的延長(zhǎng)線于點(diǎn)F.連接AE并延長(zhǎng)交BF于點(diǎn)C

1)求證:ABBC

2)如果AB10tanFAC,求FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)直角三角形的兩條直角邊的比為,那么這個(gè)三角形叫做“半正切三角形”.

1)如圖①,正方形網(wǎng)格中,已知格點(diǎn),,在格點(diǎn),,,中,與,能構(gòu)成“半正切三角形”的是點(diǎn)__________;

2)如圖②,為“半正切三角形”,點(diǎn)在斜邊上,點(diǎn)在邊上,將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn),所得射線交邊于點(diǎn),連接

①小彤發(fā)現(xiàn):若為斜邊的中點(diǎn),則一定為“半正切三角形”.請(qǐng)判斷“小彤發(fā)現(xiàn)”是否正確?并說(shuō)明理由;

②連接,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

1)(探索發(fā)現(xiàn))在. ,,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合),過(guò)點(diǎn)交直線于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接

如圖(1),當(dāng)點(diǎn)在線段上,且時(shí),試猜想:

之間的數(shù)量關(guān)系:______;

______

2)(拓展探究)

如圖(2),當(dāng)點(diǎn)在線段上,且時(shí),判斷之間的數(shù)量關(guān)系及的度數(shù),請(qǐng)說(shuō)明理由.

3)(解決問(wèn)題)

如圖(3),在中,,,點(diǎn)在射線上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.當(dāng)時(shí),直接寫(xiě)出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC中,BC=AC,以BC為直徑的O與邊AB、AC分別交于點(diǎn)D、E,DFAC于點(diǎn)F.

(1)求證:點(diǎn)D是AB的中點(diǎn);

(2)判斷DF與O的位置關(guān)系,并證明你的結(jié)論;

(3)若O的半徑為10,sinB=,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,PAB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t0≤t≤2),線段PQ的垂直平分線分別交邊ADBC于點(diǎn)M、N,過(guò)QQE⊥AB于點(diǎn)E,過(guò)MMF⊥BC于點(diǎn)F

1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;

2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:

(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?

(2)求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)八年級(jí)共有900名學(xué)生,請(qǐng)你估計(jì)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案