如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動點,且總使AD=BE,AE與CD交于點F,AG⊥CD于點G,則
FG
AF
=( 。
分析:根據(jù)等邊三角形性質(zhì)得出AC=AB,∠BAC=∠B=60°,證△ABE≌△CAD,推出∠BAE=∠ACD求出∠AFD=∠BAC=60°求出∠FAG=30°,即可求出答案.
解答:證明:∵△ABC是等邊三角形,
∴AC=AB,∠BAC=∠B=60°,
在△ABE和△CAD中
AB=AC
∠B=∠DAC
BE=AD

∴△ABE≌△CAD (SAS),
∴∠BAE=∠ACD,
∴∠AFD=∠CAE+∠ACD=∠CAE+∠BAE=∠BAC=60°,
∵AG⊥CD,
∴∠AGF=90°,
∴∠FAG=30°,
∴sin30°=
FG
AF
=
1
2

FG
AF
=
1
2
點評:本題考查了全等三角形的性質(zhì)和判定等邊三角形性質(zhì),特殊角的三角函數(shù)值,含30度角的直角三角形性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形AOB的頂點A在反比例函數(shù)y=
3
x
(x>0)的圖象上,點B在x軸上.
(1)求點B的坐標(biāo);
(2)求直線AB的函數(shù)表示式;
(3)在y軸上是否存在點P,使△OAP是等腰三角形?若存在,直接把符合條件的點P的坐標(biāo)都寫出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等邊三角形ABC的邊長為6,點D,E分別在邊AB,AC上,且AD=AE=2.若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設(shè)點F運動的時間為t秒.當(dāng)t>0時,直線FD與過點A且平行于BC的直線相交于點G,GE的延長線與BC的延長線相交于點H,AB與GH相交于點O.
(1)設(shè)△EGA的面積為S,寫出S與t的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時,AB⊥GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊三角形ABC的邊長為a,若D、E、F、G分別為AB、AC、CD、BF的中點,則△BEG的面積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數(shù)是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步練習(xí)冊答案