如圖,消防云梯的長度是34米,在一次執(zhí)行任務(wù)時(shí),它只能停在離大樓16米遠(yuǎn)的地方,則云梯能達(dá)到大樓的高度是______米.
在Rt△ABC中,∵AB=34米,CB=16米,
∴AC=
AB2-BC2
=30米.
∴云梯能達(dá)到大樓的高度是30米.
故填空答案:30.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

求有一個(gè)數(shù)是16的一組勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三條公路的交叉地帶是一個(gè)三角形,經(jīng)測量這個(gè)三角形的三條邊長分別是AB=130米,BC=140米,AC=150米.市政府準(zhǔn)備將其作為綠化用地,請你求出綠化用地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,ABCD-A′B′C′D′為長方體,AA′=50cm,AB=40cm,AD=30cm,把上、下底面都等分成3×4個(gè)小正方形,其邊長均為10cm,得到點(diǎn)E、F、G、H和E′、F′、G′、H′,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面E點(diǎn)沿表面爬行至上底面G',點(diǎn)至少要花時(shí)間______秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形ABCD的外接圓⊙O的半徑為2,對角線AC與BD的交點(diǎn)為E,AE=EC,AB=
2
AE,且BD=2
3
,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請按要求完成下列各題:
(1)畫線段ADBC且使AD=BC,連接CD;
(2)線段AC的長為______,CD的長為______;
(3)△ACD的形狀為______;
(4)若E為BC的中點(diǎn),則AE的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓柱形玻璃杯,高為7cm,底面周長為16cm,在杯內(nèi)離杯底2cm的點(diǎn)C處有滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿1cm與蜂蜜相對的點(diǎn)A處,則螞蟻到達(dá)蜜的最短距離為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,分別以Rt△ABC的三邊為邊向外作三個(gè)正方形,其面積分別用S1、S2、S3表示,請寫出S1、S2、S3之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

四年一度的國際數(shù)學(xué)家大會于2002年8月20日在北京召開,大會會標(biāo)如圖1所示.它是由四個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形,若大正方形的面積為13.每個(gè)直角三角形兩直角邊的和為5,求中間小正方形的面積.

查看答案和解析>>

同步練習(xí)冊答案