【題目】如圖,AG是正八邊形ABCDEFGH的一條對角線.
(1)在剩余的頂點(diǎn)B、C、D、E、F、H中,連接兩個頂點(diǎn),使連接的線段與AG平行,并說明理由;
(2)兩邊延長AB、CD、EF、GH,使延長線分別交于點(diǎn)P、Q、M、N,若AB=2,求四邊形PQMN的面積.
【答案】(1)BF∥AG.理由見解析;(2).
【解析】試題分析: (1)利用已知得出正八邊形,它的內(nèi)角都為135°,再利用正八邊形ABCDEFGH關(guān)于直線BF對稱,得出∠2+∠3=180°,進(jìn)而得出答案,
(2)根據(jù)題意得出△PAH≌△QCB≌△MDE,則PA=QB=QC=MD,即PQ=QM,故四邊形PQMN是正方形,進(jìn)而求出PQ的長即可得出答案.
試題解析(1)連接BF,則有BF∥AG,
理由如下:
∵ABCDEFGH是正八邊形,
∴它的內(nèi)角都為135°,
又∵HA=HG,
∴∠1=22.5°,
從而∠2=135°﹣∠1=112.5°,
由于正八邊形ABCDEFGH關(guān)于直線BF對稱,
∴∠3=135°=67.5°
即∠2+∠3=180°,故BF∥AG,
(2)根據(jù)題設(shè)可知∠PHA=∠PAH=45°,
∴∠P=90°,同理可得∠Q=∠M=90°,
∴四邊形PQMN是矩形.
又∵∠PHA=∠PAH=∠QBC=∠QCB=∠MDE=∠MED=45°,AH=BC=DE,
∴△PAH≌△QCB≌△MDE,
∴PA=QB=QC=MD,即PQ=QM,
故四邊形PQMN是正方形.
在Rt△PAB中,
∵∠PAH=45°,AB=2,
∴ PA=ABsin45°=2,
∴ PQ=PA+AB+BQ=+2+=2+2,
故四邊形PQMN的面積 ==12+8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點(diǎn)A(2,3).
(1)k的值為______ ;
(2)判斷點(diǎn)B(-1,6)是否在這個函數(shù)的圖象上,并說明理由;
(3)當(dāng)x<3時,直接寫出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動,將含30的三角尺ABC繞頂點(diǎn)A順時針轉(zhuǎn)動,使兩塊三角尺至少有一組邊互相平行,如圖2,當(dāng)∠BAD=15°時,BC∥DE,則∠BAD(0°<∠BAD<180°)其它所有可能符合條件的度數(shù)為( )
A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于和兩點(diǎn).
觀察圖象可知:①當(dāng)或時,;②當(dāng)或時,,即通過觀察函數(shù)的圖象,可以得到不等式的解集.
有這樣一個問題:求不等式的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗(yàn),對求不等式的解集進(jìn)行了探究.
下面是他的探究過程,請將()、()、()補(bǔ)充完整:
()將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)時,原不等式不成立.
當(dāng)時,原不等式可以轉(zhuǎn)化為.
當(dāng)時,原不等式可以轉(zhuǎn)化為.
()構(gòu)造函數(shù),畫出圖象.
設(shè),,在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.
雙曲線如圖所示,請?jiān)诖俗鴺?biāo)系中畫出拋物線.(不用列表)
()確定兩個函數(shù)圖象公共點(diǎn)的橫坐標(biāo).
觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗(yàn)證可知:滿足的所有的值為__________.
()借助圖象,寫出解集.
結(jié)合()的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式的解集為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長線于點(diǎn)F.
(1)求證:FE⊥AB;
(2)當(dāng)EF=6,=時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長線相交于點(diǎn)P,若PA= 6cm,求AC的長.
四、綜合題(10分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進(jìn)行調(diào)查,將“對自己做錯題進(jìn)行整理、分析、改正”(選項(xiàng)為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進(jìn)行了整理,繪制成部分統(tǒng)計(jì)圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為________, =________%, =________%,“常!睂(yīng)扇形的圓心角的度數(shù)為__________;
(2)請你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有3200名學(xué)生,請你估計(jì)其中“總是”對錯題進(jìn)行整理、分析、改正的
學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條直線y1=ax+b與y2=bx+a(a≠0,b≠0)在同一平面直角坐標(biāo)系中的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在“圣誕節(jié)”來臨前夕,購進(jìn)一種品牌巧克力,每盒進(jìn)價是元.超市規(guī)定每盒售價不得少于元,根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價定為每盒元時,每天可以賣出盒,每盒售價提高元,每天要少賣出盒.
()試求出每天的銷售量(盒)與每盒售價(元)之間的函數(shù)關(guān)系式.
()當(dāng)每盒售價定為多少元時,每天銷售的利潤(元)最大?最大利潤是多少?
()為穩(wěn)定物價,有關(guān)管理部門限定:這種巧克力的每盒售價不得高于元.如果超市想要每天獲得不低于元的利潤,那么超市每天至少銷售巧克力多少盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com