【題目】在一個不透明的袋子里裝有2個紅球1個黃球,這3個小球除顏色不同外,其它都相同,貝貝同學(xué)摸出一個球后放回口袋再摸一個;瑩瑩同學(xué)一次摸2個球,兩人分別記錄下小球的顏色,關(guān)于兩人摸到1個紅球1個黃球和2個紅球的概率的描述中,正確的是(

A. B.

C. D.

【答案】D

【解析】試題解析:不透明的袋子里裝有2個紅球1個黃球,貝貝同學(xué)摸出一個球后放回口袋再摸一個;

1

2

1

11

21

黃紅1

2

12

22

黃紅2

1

2

黃黃

一種9種結(jié)果,(貝貝摸到11黃) (貝貝摸到2紅)

瑩瑩同學(xué)一次摸2個球,一共有3種情況:紅12,紅1黃,紅2.

(瑩瑩摸到11黃) (瑩瑩摸到2紅)

A. 錯誤.

B. 錯誤.

C. 錯誤.

D. 正確.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊老師免費,學(xué)生按8折收費;乙方案:師生都按7.5折收費.

(1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

(2)當(dāng)n=70時,采用哪種方案更優(yōu)惠?

(3)當(dāng)n=100時,采用哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點O在坐標(biāo)原點,邊BOx軸的負半軸上,∠BOC=60°,頂點C的坐標(biāo)為(m,3),反比例函數(shù)y=的圖象與菱形對角線AO交于點D,連接BD,當(dāng)BDx軸時,k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答下列問題:(老師在黑板上的講解如下)

利用運算律有時能進行簡便計算.

1 98×12(1002)×121200241176.

216×233+17×233(16+17)×233233

(1)請你參考黑板中老師的講解,用運算律簡便計算(請寫出具體的解題過程)

999×(13).

999×118+333×()999×18

(2)計算:6÷().

方方同學(xué)的計算過程如下:

原式=6÷()+6=﹣12+186.

請你判斷方方同學(xué)的計算過程是否正確,若不正確,請你寫出正確的計算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019111日是重慶城市花博會在重慶江北嘴中央商務(wù)區(qū)舉行,商務(wù)區(qū)附近的某花店抓住商機,從111日開始銷售A、B兩種花束,A花束每束利潤率是40%B種花束每束利潤率是20%,當(dāng)日,A種花束的銷量是B種花束銷量的,這兩種花束的總利潤率是30%112日在A、B兩種花束利潤率保持不變的情況下,若要想當(dāng)日的總利潤率達到35%,則A花束的銷量與B花束的銷量之比是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,BOC=80°,OE是∠BOC的角平分線,OFOE的反向延長線.

(1)求∠2、3的度數(shù);

(2)說明OF平分∠AOD的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在相鄰兩點距離為1的點陣紙上(左右相鄰或上下相鄰的兩點之間的距離都是1個單位長度),三個頂點都在點陣上的三角形叫做點陣三角形,請按要求完成下列操作:

1)將點陣ABC水平向右平移4個單位長度,再豎直向上平移5個單位長度,畫出平移后的A1B1C1;

2)連接AA1、BB1,則線段AA1、BB1的位置關(guān)系為  、數(shù)量關(guān)系為  .估計線段AA1的長度大約在  AA1  單位長度:(填寫兩個相鄰整數(shù));

3)畫出ABCAB上的高CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,GCD的中點,E是邊長AD上的動點,EG的延長線與BC的延長線相交于點F,連接CE,DF

1)求證:四邊形CEDF是平行四邊形.

2)填空:若AB3cm,BC5cm,∠B60°,則當(dāng)AE   時,四邊形CEDF是矩形;當(dāng)AE   時,四邊形CEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,E、F在菱形的邊BC,CD上.

(1)證明:BE=CF.

(2)當(dāng)點E,F(xiàn)分別在邊BC,CD上移動時(△AEF保持為正三角形),請?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個定值;如果變化,求出其最大值.

(3)在(2)的情況下,請?zhí)骄俊鰿EF的面積是否發(fā)生變化?若不變,求出這個定值;如果變化,求出其最大值.

查看答案和解析>>

同步練習(xí)冊答案