【題目】如圖,在RtABC中,∠A90°,BC4,以BC的中點O為圓心分別與ABAC相切于D、E兩點,則的長為( 。

A. B. C. D. π

【答案】C

【解析】

連接OE、OD,由切線的性質(zhì)可知OEAC,ODAB,由于OBC的中點,從而可知OD是中位線,所以可知∠B45°,從而可知半徑r的值,最后利用弧長公式即可求出答案.

解:連接OE、OD,

設(shè)半徑為r,

∵⊙O分別與ABAC相切于D,E兩點,

OEAC,ODAB

OBC的中點,

OD是中位線,

ODAEAC,

AC2r,

同理可知:AB2r,

ABAC,

∴∠B45°,

BC4,

∴由勾股定理可知AB2,

r,

.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC中,邊BC長為12,高AD長為8

1)如圖,矩形EFGH的邊GHBC邊上,其余兩個頂點EF分別在AB、AC邊上,EFAD于點K

的值

設(shè)EH=x,矩形EFGH的面積為S,求Sx的函數(shù)關(guān)系式,并求S的最大值

2)若ABAC,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,直接寫出正方形PQMN的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,在△ABC中,點O是AC上一點,過點O的直線與AB,BC的延長線分別相交于點M,N.

【問題引入】

(1)若點O是AC的中點, ,求的值;

溫馨提示:過點A作MN的平行線交BN的延長線于點G.

【探索研究】

(2)若點O是AC上任意一點(不與A,C重合),求證: ;

【拓展應(yīng)用】

(3)如圖②所示,點P是△ABC內(nèi)任意一點,射線AP,BP,CP分別交BC,AC,AB于點D,E,F(xiàn).若, ,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四張正面分別寫有1、2、34的不透明卡片,它們的背面完全相同,現(xiàn)把它們洗勻,背面朝上放置后,開始游戲游戲規(guī)則如下:

連摸三次,每次隨機摸出一張卡片,并翻開記下卡片上的數(shù)字,每次摸出后不放回,如果第三次摸出的卡片上的數(shù)字,正好介于第一、二次摸出的卡片上的數(shù)字之間,則游戲勝出,否則,游戲失敗問:

若已知小明第一次摸出的數(shù)字是4,第二次摸出的數(shù)字是2,在這種情況下,小明繼續(xù)游戲,可以獲勝的概率為______

若已知小明第一次摸出的數(shù)字是3,求在這種情況下,小明繼續(xù)游戲,可以獲勝的概率要求列表或用樹狀圖求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(1)班班主任對本班學(xué)生進行了我最喜歡的課外活動的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

1)七年級(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為_____度,請補全條形統(tǒng)計圖;

2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A4名學(xué)生中隨機抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=﹣x+x軸交于點A,與y=﹣x相交于點B,點C是線段OB上一動點,連接AC,在AC上方取點D,使得cosCAD,且,連接OD,當(dāng)點C從點O運動到點B時,線段OD掃過的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個直角三角形的苗圃,由一個正方形花壇和兩塊直角三角形的草皮組成.如果兩個直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為(  )平方米.

A. 3 B. 9 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△A'BC是兩個完全重合的直角三角板,∠B30°,斜邊長為10cm.三角板ABC繞直角頂點C順時針旋轉(zhuǎn),當(dāng)點A落在AB邊上時.(1)求CA旋轉(zhuǎn)到CA′所構(gòu)成的扇形的弧長.(2)判斷BCAB′的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

次數(shù)

1

2

3

4

5

6

7

8

9

10

黑棋數(shù)

2

5

1

5

4

7

4

3

3

6

根據(jù)以上數(shù)據(jù),解答下列問題:

(I)直接填空:第10次摸棋子摸到黑棋子的頻率為   

(Ⅱ)試估算袋中的白棋子數(shù)量.

查看答案和解析>>

同步練習(xí)冊答案