將已知六邊形ABCDEF,用對(duì)角線將它剖分成互不重疊的4個(gè)三角形,那么各種不同的剖分方法種數(shù)是


  1. A.
    6
  2. B.
    8
  3. C.
    12
  4. D.
    14
D
分析:要用對(duì)角線將六邊形ABCDEF剖分成互不重疊的4個(gè)三角形,①通過同一個(gè)頂點(diǎn)作三條對(duì)角線,所以有六種作法.②從一個(gè)頂點(diǎn)作兩條對(duì)角線;③中間是個(gè)四邊形,兩端2個(gè)三角形,把四邊形加條對(duì)角線.
解答:解:∵六邊形ABCDEF有6個(gè)頂點(diǎn),且用對(duì)角線將它剖分成互不重疊的4個(gè)三角形,
∴只能通過同一個(gè)頂點(diǎn)作三條對(duì)角線(如圖1),這種分法有6種,
也從一個(gè)頂點(diǎn)作兩條對(duì)角線(如圖2),這種分法有2種,
如圖3,中間是個(gè)四邊形,兩端2個(gè)三角形,把四邊形加條對(duì)角線,這種分法有6種,
故各種不同的剖分方法有14種.
故選D.
點(diǎn)評(píng):本題考查了多邊形的性質(zhì),n邊形過一個(gè)頂點(diǎn)有(n-3)條對(duì)角線,它們把n邊形分割成了(n-2)個(gè)三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知△ABC為正三角形,點(diǎn)M是射線BC上任意一點(diǎn),點(diǎn)N是射線CA上任意一點(diǎn),且BM=CN,直線BN與AM相交于Q點(diǎn).就下面給出的三種情況(如圖①、②、③),先用量角器分別測(cè)量∠BQM的大小,然后猜測(cè)∠BQM等于多少度,并利用圖③證明你的結(jié)論.
精英家教網(wǎng)
(2)將(1)中的“正△ABC”分別改為正方形ABCD(如圖④)、正五邊形ABCDE(如圖⑤).正六邊形ABCDEF(如圖③)、…、正n邊形ABCD…X(如圖(n)),“點(diǎn)N是射線CA上任意一點(diǎn)”改為點(diǎn)N是射線CD上任意一點(diǎn),其余條件不變,根據(jù)(1)的求解思路,分別推斷∠BQM各等于多少度,將結(jié)論填入下表:精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,△ABC為正三角形,點(diǎn)M、N分別在BC、CA邊上,且BM=CN,BN與AM相交于Q點(diǎn),試求∠BQM的度數(shù).
解:∵△ABC為正三角形,∴∠ABC=∠ACB=60°,AB=BC.
在△ABM和△BCN中,
      
.
=
      
.
      
.
=∠
      
.
      
.
=
      
.
?△ABM≌△BCN(
 
).
∴∠
 
=∠
 

∴∠BQM=∠
 
+∠
 
=∠
 
+∠
 
=
 
°.
(2)如果將(1)中的正三角形改為正方形ABCD(如圖2),點(diǎn)M、N分別在BC、CD邊上,且BM=CN,BN與AM相交于Q點(diǎn),那么∠BQM等于多少度呢?說明理由.
精英家教網(wǎng)
(3)如果將(1)中的“正三角形”改為正五邊形、正六邊形、…、正n邊形(如圖3),其余條件都不變,請(qǐng)你根據(jù)(1)(2)的求解思路,將你推斷的結(jié)論填入下表:(正多邊形的各個(gè)內(nèi)角都相等)
正多邊形 正五邊形 正六邊形 正n邊形
∠BQM的度數(shù)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)已知△ABC為正三角形,點(diǎn)M是BC上一點(diǎn),點(diǎn)N是AC上一點(diǎn),AM、BN相交于點(diǎn)Q,∠BAM=∠NBC,猜想∠BQM等于多少度,并證明你的猜想.
(2)將(1)中的“正△ABC”分別改為正方形ABCD、正五邊形ABCDE、正六邊形ABCDEF、正n邊形ABCD…X,“點(diǎn)N是AC上一點(diǎn)”改為點(diǎn)N是CD上一點(diǎn),其余條件不變,分別推斷出∠BQM等于多少度,將結(jié)論填入下表:
正多邊形 正方形 正五邊形 正六邊形 正n邊形
∠BQM的度數(shù)
 
 
 
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•石家莊二模)閱讀下列材料:
問題:如圖1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=
5
,PB=
2
,PC=1,求∠BPC的度數(shù).
小明同學(xué)的想法是:已知條件比較分散,可以通過旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是他將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖2),然后連接PP′.
請(qǐng)你參考小明同學(xué)的思路,解決下列問題:
(1)圖2中∠BPC的度數(shù)為
135°
135°

(2)如圖3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2
13
,PB=4,PC=2,則∠BPC的度數(shù)為
120°
120°
,正六邊形ABCDEF的邊長(zhǎng)為
2
7
2
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=
5
,PB=
2
,PC=1,求∠BPC的度數(shù).
【分析問題】根據(jù)已知條件比較分散的特點(diǎn),我們可以通過旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖2),然后連結(jié)PP′.
【解決問題】請(qǐng)你通過計(jì)算求出圖2中∠BPC的度數(shù);
【比類問題】如圖3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2
13
,PB=4,PC=2.
(1)∠BPC的度數(shù)為
120°
120°
; 
(2)直接寫出正六邊形ABCDEF的邊長(zhǎng)為
2
7
2
7

查看答案和解析>>

同步練習(xí)冊(cè)答案