畫(huà)出拋物線y=4(x-3)2+2的大致圖象,寫(xiě)出它的最值和增減性.
【答案】分析:確定頂點(diǎn)坐標(biāo)、對(duì)稱軸、與y軸及x軸交點(diǎn),連線即可得拋物線的大致圖象.
解答:解:因?yàn)轫旤c(diǎn)坐標(biāo)為(3,2),對(duì)稱軸為x=3,
與y軸交點(diǎn)為(0,38),
因?yàn)椤?144-4×2×19=144-152=-8<0,
所以與x軸無(wú)交點(diǎn).
作圖得:最值2.
增減性:當(dāng)x≥3時(shí),y隨x的增大而增大;
當(dāng)x≤3時(shí),y隨x的增大而減。
點(diǎn)評(píng):解答此題不僅要熟知描點(diǎn)法,還要會(huì)求二次函數(shù)的頂點(diǎn)坐標(biāo)及與x軸、y軸的交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=-x2+mx+3與x軸的一個(gè)交點(diǎn)A(3,0).
(1)你一定能分別求出這條拋物線與x軸的另一個(gè)交點(diǎn)B及與y軸的交點(diǎn)C的坐標(biāo),試試看;
(2)設(shè)拋物線的頂點(diǎn)為D,請(qǐng)?jiān)趫D中畫(huà)出拋物線的草圖.若點(diǎn)E(-2,n)在直線BC上,試判斷E點(diǎn)是否在經(jīng)過(guò)D點(diǎn)的反比例函數(shù)的圖象上,把你的判斷過(guò)程寫(xiě)出來(lái);
(3)請(qǐng)?jiān)O(shè)法求出tan∠DAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心、2為半徑的圓與x軸交于點(diǎn)A、B.已知拋精英家教網(wǎng)物線y=
1
6
x2+bx+c過(guò)點(diǎn)A和B,與y軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo),并畫(huà)出拋物線的大致圖象;
(2)點(diǎn)Q(8,m)在拋物線y=
1
6
x2+bx+c上,點(diǎn)P為此拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求PQ+PB的最小值;
(3)CE是過(guò)點(diǎn)C的⊙M的切線,點(diǎn)E是切點(diǎn),求OE所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=6.
(1)求拋物線和直線BC的解析式;
(2)在給定的直角坐標(biāo)系中,畫(huà)出拋物線和直線BC;
(3)若⊙P過(guò)A、B、C三點(diǎn),求⊙P的半徑;
(4)拋物線上是否存在點(diǎn)M,過(guò)點(diǎn)M作MN⊥x軸于點(diǎn)N,使△MBN被直線BC分成面積比為1:3的兩部分?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線y=-x2-2ax+b經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)P(3,4).
(1)求此拋物線的解析式,寫(xiě)出拋物線與x軸的交點(diǎn)坐標(biāo)和頂點(diǎn)坐標(biāo),并依此在所給平面直角坐標(biāo)系中畫(huà)出拋物線的大致圖象;
(2)若拋物線與x軸的另一個(gè)交點(diǎn)為B,現(xiàn)將拋物線向射線AP方向平移,使P點(diǎn)落在M點(diǎn)處,同時(shí)拋物線上的B點(diǎn)落在點(diǎn)D(BD∥PM)處.設(shè)拋物線平移前P、B之間的曲線部分與平移后M、D之間的曲線部分,與線段MP、BD所圍成的面積為m,線段 PM為n,求m與n的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心、2為半徑的圓與x軸交于點(diǎn)A、B.已知拋物線y=
1
6
x2+bx+c
過(guò)點(diǎn)A和B,與y軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo),并畫(huà)出拋物線的大致圖象.
(2)點(diǎn)Q(8,m)在拋物線y=
1
6
x2+bx+c
上,點(diǎn)P為此拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求PQ-PA的最大值.
(3)CE是過(guò)點(diǎn)C的⊙M的切線,點(diǎn)E是切點(diǎn),在拋物線上是否存在一點(diǎn)N,使△CON的面積等于△COE的面積?精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案