【題目】已知:如圖,在中,,,.點從點開始沿邊向點的速度移動,同時點從點開始沿邊向點的速度移動.當一個點到達終點時另一點也隨之停止運動,設運動時間為秒,

求幾秒后,的面積等于?

求幾秒后,的長度等于?

運動過程中,的面積能否等于?說明理由.

【答案】(1)秒后的面積等于;(2)時,的長度等于;(3)的面積不能等于

【解析】

(1)設經過x秒鐘,△PBQ的面積等于6平方厘米,根據(jù)點PA點開始沿AB邊向點B1cm/s的速度移動,點QB點開始沿BC邊向點C2cm/s的速度移動,表示出BPBQ的長可列方程求解.
(2)根據(jù)PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(3)通過判定得到的方程的根的判別式即可判定能否達到8cm2

(1)經過x秒以后△PBQ面積為6

×(5x)×2x=6

整理得:x25x+6=0

解得:x=2x=3

答:23秒后△PBQ的面積等于6cm2.

時,在中,,

,

,

,

時,的長度等于

設經過秒以后面積為,

整理得:

的面積不能等于

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,點D,E分別為邊AB,AC上的點,且有AEDB,連接DE,DC

1)如圖1,若AB6,∠DEC90°,求DEC的面積.

2MDE中點,當D,E分別為AB、AC的中點時,判定CD,AM的數(shù)量關系并說明理由.

3)如圖2,MDE中點,當D,E分別為AB,AC上的動點時,判定CD,AM的數(shù)量關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是( 。

A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠ACB=90°,AC=BC=2,將直角邊ACA點逆時針旋轉至AC,連接BC′,EBC的中點,連接CE,CE的最大值為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究:已知平行四邊形的面積為,所在直線上一點.

如圖:當點重合時,________;

如圖,當點均不重合時,________;

如圖,當點(或)的延長線時,________.

拓展推廣:如圖,平行四邊形的面積為,、分別為延長線上兩點,連接、、,求出圖中陰影部分的面積,并說明理由.

實踐應用:如圖是一平行四邊形綠地、分別平行于,它們相交于點,,,,現(xiàn)進行綠地改造,在綠地內部作一個三角形區(qū)域(連接、、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC邊上的中線,AEBC,垂足為點E,交BDF,cosABC=,AB=13.

(1)求AE的長;

(2)求tanDBC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點AAEBC,垂足為E,連接DE,F為線段DE上一點,且AFE=B

1)求證:ADF∽△DEC

2)若AB=8,AD=6,AF=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內的一點,且PA=3,PB=4,PC=5,將△ABP繞點B順時針旋轉60°到△CBQ位置.連接PQ,則以下結論錯誤的是( 。

A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

同步練習冊答案