【題目】如圖,AB是⊙O的直徑,且AB=2cm,點(diǎn)P為弧AB上一動(dòng)點(diǎn)(不與A,B重合), = ,過點(diǎn)D作⊙O的切線交PB的延長線于點(diǎn)C.
(1)試證明AB∥CD;
(2)填空: ①當(dāng)BP=1cm時(shí),PD=cm;
②當(dāng)BP=cm時(shí),四邊形ABCD是平行四邊形.
【答案】
(1)證明:連接OD.
∵CD是⊙O的切線,
∴OD⊥CD,
∵ = ,
∴∠AOD=∠BOD=90°,
∴OD⊥AB,
∴AB∥CD.
(2) + ;
【解析】(2)解:①作DE⊥AP于E,DF⊥PC于F.
∵ = ,
∴∠APD=∠DPB,
∴DE=DF,
∵AB是直徑,
∴∠APB=90°,
∴∠EPD=∠FPD=45°,易知四邊形PEDF是正方形,
∵AD=BD,DE=DF,
∴Rt△DEA≌Rt△DFB,
∴AE=BF,
在Rt△PAB中,∵AB=2cm,PB=1cm,
∴PA= = ,
∴PA+PB=PE+AE+PF﹣BF=2PE=1+ ,
∴PD= PE=( + )cm.
所以答案是 + .②當(dāng)P是 中點(diǎn)時(shí),DC=2OB=AB,
∵AB∥CD,
∴四邊形ABCD是平行四邊形.
易知BD= OB= cm,
所以答案是 .
【考點(diǎn)精析】關(guān)于本題考查的平行四邊形的判定和切線的性質(zhì)定理,需要了解兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P、Q是△ABC的BC邊上的兩點(diǎn),且BP=AP=AQ=QC,∠PAQ=60°.
(1)求證:AB=AC;
(2)求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,l3、l4和l1、l2分別交于點(diǎn)A、B、C、D,點(diǎn)P在直線l3或l4上且不與點(diǎn)A、B、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若點(diǎn)P在圖(1)位置時(shí),求證:∠3=∠1+∠2;
(2)若點(diǎn)P在圖(2)位置時(shí),請(qǐng)直接寫出∠1、∠2、∠3之間的關(guān)系;
(3)若點(diǎn)P在圖(3)位置時(shí),寫出∠1、∠2、∠3之間的關(guān)系并給予證明;
(4)若點(diǎn)P在C、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),請(qǐng)直接寫出∠1、∠2、∠3之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”,他的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的。“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù),例如:(a+b)2=a2+2ab+b2展開式中的系數(shù)1,2,1恰好對(duì)應(yīng)圖中第三行的數(shù)字;(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1,3,3,1恰好對(duì)應(yīng)圖中第四行的數(shù)字…….請(qǐng)認(rèn)真觀察此圖,根據(jù)前面各式的規(guī)律,寫出(a+b)6的展開式:(a+b)6=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)A,B,C的距離分別為3,4,5,則△ABC的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直接寫出結(jié)果:(1)-1+1=_____;(2)3-7=_____;
(3)4÷=_____;(4)-7×0.5=_____;(5)(-2)3=_____;
(6)(-1)2n=_______(n為正整數(shù));(7)4x=0的解是_____;
(8)x=4 的解是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角板(含30°、60°角)和一把直尺擺放位置如圖所示,直尺與三角板的一角相交于點(diǎn)A,一邊與三角板的兩條直角邊分別相交于點(diǎn)D、點(diǎn)E,且CD=CE,點(diǎn)F在直尺的另一邊上,那么∠BAF的大小為°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,某市水費(fèi)實(shí)行階梯式計(jì)量水價(jià).每戶每月用水量不超過25噸,收
費(fèi)標(biāo)準(zhǔn)為每噸a元;若每戶每月用水量超過25噸時(shí),其中前25噸還是每噸a元,超出的部
分收費(fèi)標(biāo)準(zhǔn)為每噸b元.下表是小明家一至四月份用水量和繳納水費(fèi)情況.根據(jù)表格提供的數(shù)
據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 16 | 18 | 30 | 35 |
水費(fèi)(元) | 32 | 36 | 65 | 80 |
(1)a=________;b=________;
(2)若小明家五月份用水32噸,則應(yīng)繳水費(fèi) 元;
(3)若小明家六月份應(yīng)繳水費(fèi)102.5元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com