【題目】如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,∠ACB的角平分線分別交AB,BD于M,N兩點(diǎn).若AM=2,則線段ON的長(zhǎng)為(
A.
B.
C.1
D.

【答案】C
【解析】解:作MH⊥AC于H,如圖,
∵四邊形ABCD為正方形,
∴∠MAH=45°,
∴△AMH為等腰直角三角形,
∴AH=MH= AM= ×2= ,
∵CM平分∠ACB,
∴BM=MH= ,
∴AB=2+
∴AC= AB= (2+ )=2 +2,
∴OC= AC= +1,CH=AC﹣AH=2 +2﹣ =2+
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
= ,即 = ,
∴ON=1.
故選C.
【考點(diǎn)精析】關(guān)于本題考查的角平分線的性質(zhì)定理和正方形的性質(zhì),需要了解定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線經(jīng)過(guò)點(diǎn)D6,1),點(diǎn)C是雙曲線第三象限分支上的動(dòng)點(diǎn),過(guò)CCAx軸,過(guò)DDBy軸,垂足分別為A,B,連接AB,BC.

1)求k的值;

2)若BCD的面積為12,求直線CD的解析式;

3)判斷ABCD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3是二次多項(xiàng)式,則a2+b2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:
(1) x﹣2=4+ x
(2) ﹣2=
(3) [x﹣ (x﹣1)]= (x﹣
(4) =1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,動(dòng)點(diǎn)F在邊BC上,且不與點(diǎn)B、C重合,將△EBF沿EF折疊,得到△EB′F.

(1)當(dāng)∠BEF=45°時(shí),求證:CF=AE;

(2)當(dāng)B′D=B′C時(shí),求BF的長(zhǎng);

(3)求△CB′F周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式:5(x+1)-3x>x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD的邊長(zhǎng)是13,O是對(duì)角線的交點(diǎn),過(guò)O點(diǎn)的三條直線將菱形分成陰影和空白部分.若菱形一條對(duì)角線長(zhǎng)為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連結(jié)CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.

(1)求證:AB⊥AE;

(2)若,求證:四邊形ADCE為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案