【題目】2016年中考前,張老師為了解全市初三男生體育考試項目的選擇情況(每人限選一項),在全市范圍內隨機調查了部分初三男生,將調查結果分成五類:A.推實心球(2kg);B.立定跳遠;C.半場運球;D.跳繩;E.其他,并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)假定全市初三畢業(yè)學生中有32000名男生,試估計全市初三男生中選半場運球的人數(shù)有多少人;
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B.立定跳遠;C.半場運球;D.跳繩中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結果.
【答案】
(1)解:被調查的學生總人數(shù)為150÷15%=1000(人),
則選擇B的人數(shù)為1000﹣(150+400+200+50)=200(人),
補全圖形如下:
(2)解:32000×40%=12800(人)
答:估計全市初三男生中選半場運球的人數(shù)有12800人
(3)解:根據(jù)題意畫出樹狀圖如下:
所有等可能結果有9種:
BB、BC、BD、CB、CC、CD、DB、DC、DD,
同時選擇B和D的有2種可能,即BD和DB,
P(同時選擇B和D)=
【解析】(1)用選擇A的人數(shù)除以所占的百分比求出總人數(shù),再用總人數(shù)減去A、C、D、E人數(shù)之和求出B的人數(shù),然后補全條形統(tǒng)計圖即可;(2)用32000乘以選C所占的百分比,計算即可得解;(3)畫出樹狀圖,然后根據(jù)概率公式列式即可得解.
【考點精析】掌握扇形統(tǒng)計圖和條形統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個不同的一次函數(shù)y=ax+b與y=bx+a的圖象在同一平面直角坐標系內的位置可能是( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD, ,.求度數(shù).
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質,可得 _______.
問題遷移:如圖3,AD∥BC,點P在射線OM上運動, , .
(1)當點P在A、B兩點之間運動時, 、、之間有何數(shù)量關系?請說明理由.
(2)如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出、、之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,第一次將變換成,第二次將變換成,第三次將變換成,已知:、、、、、、.若將進行了(,且為整數(shù))次變換,得到,推測的坐標是_____,點的坐標是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,點E在AD上,以BE為折痕將△ABE翻折,點A恰好落在CD邊上的點F處. 已知△EDF的周長為12,△BCF的周長為22,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:在平面直角坐標系中,對于任意兩點與的“非常距離”,給出如下定義:
若,則點與點的“非常距離”為;
若,則點與點的“非常距離”為.
例如:點,點,因為,所以點與點的“非常距離”為,也就是圖1中線段與線段長度的較大值(點為垂直于軸的直線與垂直于軸的直線的交點).
(1)已知點,為軸上的一個動點.
①若點(0,3),則點與點的“非常距離”為 ;
②若點與點的“非常距離”為2,則點的坐標為 ;
③直接寫出點與點的“非常距離”的最小值為 ;
(2)已知點(0,1),點是直線上的一個動點,如圖2,求點與點“非常距離”的最小值及相應的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別為(0,3)、(﹣1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A'B'OC'.
(1)若拋物線過點C,A,A',求此拋物線的解析式;
(2)求平行四邊形ABOC和平行四邊形A'B'OC'重疊部分△OC'D的周長;
(3)點M是第一象限內拋物線上的一動點,問:點M在何處時;△AMA'的面積最大?最大面積是多少?并求出此時M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是正方形,點E、F分別在邊AB、邊BC上,DE⊥AF,DE與AF交于點O,將線段AE沿AF進行平移至FG,過點G作GH⊥AB的延長線于點H.
(1)判斷四邊形BFGH的形狀并證明;
(2)寫出圖中所有面積相等的圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com